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Chapter 1

Introduction: The Formation of

stars and planetary systems
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This �rst chapter summarize the astrophysical context of the thesis and present
the main questions that we want to investigate. We will start with a short review of
the paradigm of star formation and in particular for single star with low mass (star
of a mass comparable to our Sun). Then we will describe in Sec.1.2 the current most
accepted planet formation scenario, the so-called `core accretion' model. In Sec.1.3
we will describe the viscous accretion and photoevaportation processes, which drive
the evolution of the gas component of the circumstellar disk. We will then describe
in Sec.1.4 the dust grain growth and settling processes which operate on the solid
particle and regulate the �rst stage of planet formation. In Sec.1.5 we will present
the main questions that we want to investigate related to the �rst stage of planet
formation and we will give a brief summary of the contents of this thesis.

1.1 Star formation

Star formation in our galaxy is a continuous process that occurs inside large concen-
trations of cold gas and dust, the Giant Molecular Clouds (GMCs). Characterized
by temperatures of about 10 K, extent up to 100 parsec and with masses between
104 and 106 M�, the GMCs have complex structure containig smaller scale struc-
ture that may be �lamentary or clumpy on a wide range of scales ([119] Williams
et al. 2000). This strong density inhomogeneity inside the cloud may be generated
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by supersonic turbulent motions ([125] Zuckerman and Evas, 1974) as is indicated
by the broad and often complex pro�les of their molecular emission lines.

1.1.1 Initial condition for the collapse of prestellar cloud cores

It is expected that star formation starts in one of the denser regions `cores' of giant
molecular clouds by gravitational contraction. The star-forming cores are created
by complex processes of molecular cloud dynamics ([75] Larson, 2003) that are not
yet full understood and therefore it's not possible specify precisely how the cores
begin their collapse. One possiblility, suggested by stability analyses, is that the
collapse begins with an unstable core in which gravity gains the upper hand over
thermal pressure and causes a runaway collapse to occur ([68, 69] Jeans 1902,1929,
[109, 110] Spitzer 1942,1978). The condition for core collapse can be easily estimate
with the virial theorem which describe the condition of equilibrium for a stable,
gravitationally bound system. In the case of a purely pressure-supported core (i.e.
in which the only force opposing gravity is the gas thermal pressure) the condition
for collapse is

2K + U < 0 (1.1)

where K,U are, respectively, the kinetic and gravitational potential energy of the
core. If we assume, for example, a uniform and isothermal spherical core of radius
R, volume V = 4πR3/3, mass M , temperature T , density ρ = M/V and mean
molecular weight µ, we can write

K =
3

2

M

µmH
kBT U = −3

5

GM2

R

where kB = 1.381 × 10−16ergK−1 is the Boltzmann constant, G = 6.674 ×
10−8cm3g−1s−2 is the gravitational constant, mH = 1.674 × 10−24g is the mass
of the hydrogen atom. The condition (1.1) may be solved for the minimum mass
necessary to initiate the spontaneous collapse of the cloud. This condition is know
as the Jeans criterion

M > MJ MJ =

(
5kBT

GµMH

)3/2( 3

4πρ

)1/2

(1.2)

The critical value MJ is called the Jeans mass. Cores which satisfy this condition
should thus be gravitationally unstable and will start to collapse. In reality, the
physics of a molecular cloud can be more complex as additional physical e�ect,
supporting the core against gravity, can a�ect the way how the cores begin their
collapse. Some possibilities that have been considered are the e�ects of rotation,
magnetic �elds and turbulent motions (see the reviews by [75] Larson (2003) and
[24] Bonnell et al. (2007)). While the core rotation has been found to be negligible
compared to gravity ([9] Arquilla and Goldsmith, 1986; [29] Caselli et al., 2002),
magnetic �eld and turbulence could play an important role in the core stability
delaying or preventing the star formation. Many authors ([94] Ostriker et al., 1999;
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[76] Li et al., 2004) think that molecular core can collapse only after the magnetic
�eld has been dissipated by ambipolar di�usion ([110] Spitzer, 1978) on a time scale
of 106 yrs, an order of magnitude higher than the typical free-fall time. Balancing
gravity with magnetic energy, critical masses comparable with core masses can be
obtained with a magnetic �eld of about 50µG. Turbulent motions can also prevent
cores from collapsing. In many cases, the velocities measured from the width of
molecular lines are indeed large enough to sustain the core against the gravity.

1.1.2 Observational classi�cation scheme of YSOs and its theoret-

ical interpretation

The Young Stellar Objects (YSOs) are classi�ed observationally according to the
shape of their Spectral Energy Distribution (SED) in the infrared (IR), as �rst
suggestion by [73] Lada and Wilking (1984) and subsequently extended by [5] Andre
et al. (1993). At this wavelenght range the YSOs present an infrared excess (over
the stellar photospheric contribution) which magnitude is quanti�ed by the slope of
the IR SED de�ned as

αIR =
∆log(λFλ)

∆logλ
(1.3)

between the near-IR and the mid-IR. In this way, the YSOs has been classify (Fig.
1.1 left pannels) in:

• Class 0: SED peaks in the far-IR or sub-mm part of the spectrum (∼ 100µm)
with no �ux being detectable in the near-IR

• Class I: approximately �at or rising SED into mid-IR (αIR > 0)

• Class II: falling SED into mid-IR (−1.5 < αIR < 0)

• Class III: little or no execess in the IR.

This observational classi�cation scheme is theoretically interpreted as an evolu-
tionary scenario sequence ([1] Adams, Lada & Shu, 1987). According this scenario,
from the gravitational collapse of cores until the formation of the �nal star, this four
class objects can be described (Fig. 1.1 right pannels) as follow:

• Class 0: Once a core becomes gravitational unstable, it starts to collapse. The
collapse phase is very short in comparison to the other phases of star formation.
For a typical inital density of a molecular core ρ = 3.3× 10−19gcm−3, the free
fall time, for a spherical core, is tff ∼ 105yrs. In this phase the forming
protostar is completely embedded by the collapsing envelope and cannot be
observed at optical and IR wavelengths yet. The spectra peak at far-IR or
sub-millimeter wavelengths.

• Class I: The free fall approximation breaks down when the heating from grav-
itational energy, released during the infall, increases the pressure of the gas
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Figure 1.1: Di�erent evolutionary stages during the formation process of a single star.
The left panels show the spectral energy distribution (SEDs) of the system and the
right panels the corrisponding system geometry. As the protostar accretes material
from the surrounding circumstellar disk approaching the �nal MS-star stage, the
peak of the emission shifts to shorter wavelengths and the IR excess diminishes.
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su�ciently to resist further contraction. The system now enters the protostel-
lar phase. During the protostellar phase, sometimes, strong bipolar out�ows
are observed to develop, i.e. strong winds moving radially outwards from the
polar regions at high speed (10− 200Km s−1). In this phase the protostar are
still obscured by the surroundig envelope, making them di�cult to observe at
optical wavelengths. Their spectra peak at far-IR wavelengths.

• Class II: Once most of the collapsing molecular core has either accreted onto
the star, been blown away by the bi-polar out�ow, or settled in the disk, it
enters in a more stable phase that lasts a few million years, the T Tauri phase.
The star continues to accrete gas from the disk, adding a luminosity to the star
comparable to the energy generated from the internal fusion. In this phase
the T Tauri stars are more easily seen than their younger counterparts, the
protostars, because of the clearing of the ambient medium. Their spectra is
composed by the protostellar emission and the �ux arising from circumstellar
disk. The disk contributes to the emission at λ ≥ IR-wavelengths producing
an excess of radiation as compared to the naked stellar photosphere.

• Class III: After most of the material in the disk around a T Tauri star
has accreted/been blown away, what remains is a protostar surround by an
exiguous residual disk. The protostar has now ceased its strong magnetic
activity, and is no longer accreting any signi�cant mass from the circumstellar
disk. The disks are thought to be thin and dusty (in the sense that the
total disk mass is small and mostly contained in dust) and possibly with
planets. This disk is usually very di�cult to observe as its emission is strongly
overwhelmed by the star emission. The spectra of this objects has a pure
stellar photospheric shape.

1.2 Planet formation

The detection and study of planets outside our solar system is one of the great
scienti�c, technological and philosophical undertakings of our time. During the
last years great e�orts have been done to understand the origin and evolution of
planets and maybe most importantly to check for the presence of even primitive life
elsewhere in the universe. There is now clear evidence for a substatial numbers of
planets orbiting other stars. From both space and ground-based instruments and
using both direct and indirect techniques (see [70] Jones 2008 for a brief review),
more then 700 planets have been discovered (Fig. 1.2).

The basic challenge of planet formation consists of assembling, in a disk orbiting
a central star, the initial ISM dust grains of sub-mm size in bodies with over 104

km in diameter (�g.1.3), a growth by nearly a factor 1013 in size or 1040 in mass.
In the study of plant formation is useful to consider di�erent size regimes in which
the interaction between the solid component and the gas is qualitatively di�erent:

• Dust - small particles from sub-mm to cm in size. They are very well-coupled
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Figure 1.2: Number of extrasolar planets versus year of discovery (generated from
the online Extrasolar Planets Encyclopedia www.exoplanet.eu).

to the gas and their dynamic is drived by a very strong drag forces with the
gas.

• Rocks - objects from cm to km in size. They are still coupled to the gas but
this couppled become more and more weak with the increasing of the size.

• Planetesimals - objects from 1km to 103km in size. They are massive enough
to be complitely decoupled to the gas and their dynamic is drived mainly from
the gravitational �eld.

• Planets - objects of 103 km and above. They again become coupled to the gas
but this time no via aerodynamic interaction but via gravitational interaction.

The process of planet formation involve a complex interaction of many factor
such as turbulent motion of the gas, magnetic processes, incident radiation �eld,
chimical composition of the dust. Considerable progress has been done over the past
two decade but there are still di�erent unresolved issues. However, the most widely
accepted planet formation model is the so-colled `core accertion' model. Basically
the evolutionary scenario of this model involves three stages (see Fig. 1.3)

1. Sticking and coagulation: In the early stage the initial sub-µm ISM dust par-
ticles grow up via collisions and stiking where the collisions are drived by
aerodynamic interaction. This growth could continues unitil 1 km-size bodies
with the formation of planetesimals. However, while growth from dust grains
to roughly meter sized bodies can be reasonably well modeled with classical
coagulation simulations ([26] Brauer et al. 2008), how to continue from m-size
to km-size bodies is still an unsolved problem, the so colled `meter barrier '
problem.
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Figure 1.3: Sequence of events leading to the assembly of the sub-micro dust grains
in planets according the core accertion model: (1) grain growth through particle-
particle interactions, (2) growth of planetesimals by two-body interactions aided by
gravity, and (3) the accretion of gas via gravitational attraction.

2. Gravitational attraction: Beyond 1km-size bodies, gravity is the clearly domi-
nant force and the planetesimals grow up via collisions drived by gravitational
interaction. This leads to the formation of planetary rocky cores.

3. Gas sweeping : The rocky cores then attract the surrounding gas which even-
tually form their atmospheres. In this late stage the forming planets heavily
interact with the disk, opening gaps and migrating towards the inner regions.
If the planetary core become massive enough, it will able to accretes and hold
on a large amounts of gas forming the giant planets.

1.3 Formation and Evolution of disks

Accretion disks around YSOs appear as a natural consequence of the gravitational
collapse of material with nonzero angular momentum (L 6= 0). Even if the molec-
ular core have initially a very low rotation velocity, as the core collapse, the rate
of rotation increase to conserve angular momentum with a consequence formation
of �attened structure perpendicular to the rotational axis, a disk. This can be un-
derstood if one consider a collapsing spherical core rotating around one single axis.
Matter falling toward the center along the direction of rotational axis (L direction),
does not feel the resistance of inertial momentum and contracts freely. In contrast,
matter falling in perpendicular to L has to transfer a high fraction of its infall ve-
locity to a rotational velocity; in this case it will not be able to fall freely on the
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protostar but will settle down in the minimum energy orbit for a given angular
momentum, i.e. a circular orbit at a certein radius R. The radius can be estimate
considering as speci�c angular momentum that appropriate for a keplerian orbit,
i.e. lk =

√
GMR. If we assume a core with constant density, mass M ≈ 1M�

and total angular momentum J ≈ 1054g cm2s−1, then the �uid elements with an
average speci�c angular momentum l = J/M� = 1021cm2s−1 will adopts keplerian
orbit around the protostar at a distance R = l2/GM ≈ 500 AU. This is clearly
much larger than the size of the star, so the gas needs to redistribute the angular
moment in order to accrete further to the center. In reality, the physics of a cloud
core collapse is much more complicated because turbulence and magnetic �eld can
also play an important role during the collapse. The formation of a disk is however
a well estabilished outcome, also of more realistic simulation of cloud collapse ([64]
Inutsuka et al. 2010).

Understanding the physical processes that drive the evolution of primordial cir-
cumstellar disks, is crucial for our understanding of planet formation. Disks evolve
through various processes, including viscous accretion, photo-evaporation by ultra-
violet and X-ray radiation, dust grain growth and settling. Here we summarize the
models and observational constrains for the di�erent processes that control the evo-
lution of circumstellar disks. In this section we focus on the evolution of the gas,
which dominate the mass of the disk. The evolution of the solid component, which
is partially coupled to the gas but which also involves distinct physical processes, is
discuss in the next section.

1.3.1 Viscous angular momentum transport

In order to let the matter of the disk fall into the the central star, we need a method
of redistributing angular momentum throughout the disk, and the central problem
of accretion disk theory is to determine why this should occur. For protoplanetary
disk, one possibility is the `viscous' evolution of the gas (e.g. [107] Shakura and
Sunyaev 1973, [81] Lynden-Bell & Pringle 1974, [101] Pringle 1981) which will be
brie�y summarized in this section.

1.3.1.1 The magnitude of molecular viscosity

It is well know that molecular viscosity does not provide enought stress to power
disk accretion and can be neglected. In order to see this, let consider the viscous
timescale (i.e. time scale on which viscosity smooth out surface density gradient on
the radial scale R)

tν =
R2

νm
(1.4)

Molecular viscosity can be expressed as νm ∼ λcs, the product of the typical random
velocity of molecules (that will be of the order of the sound speed cs) and the
collisional mean free path λ = 1/nσ where n is the number density of molecules
with cross-section for collision σ. To give an idea of the number involved, let's
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Figure 1.4: Illustration of the layered disk model proposed by Gammie (1996) [52].
In this model the innermost regions of the disk are hot enough such that thermal
ionization su�ces to couple the magnetic �eld to the gas well enough for the MRI
to operate. At large radii, cosmic rays or stellar X-rays penetrate deep enough into
the disk to provide the necessary level of ionization. At intermedi- ate radii, it is
hypothesized that accretion occurs primarily in an active surface layer ionized by
these nonthermal processes, while the central 'dead zone' is magnetically inactive.

consider, for example, a protoplanetary disk with Σ = 103gcm−2 and H/R = 0.05

at 1 AU. The number density is of the order of n ∼ Σ/2mHH ∼ 4× 1014cm−3, the
collision cross-section of a hydrogen molecule is of the order of σ ∼ 2 × 10−15cm2

and the sound speed is cs ∼ 1.5× 105cms−1. So the molecular viscosity is

νm ∼ 2× 105cm2s−1 (1.5)

This implied viscous time scale tν ∼ 1012yrs. This time scale can be estimate
observationally by measuring, for example, the rate at which accretion on to the
star decays as a function of the stellar age and for protoplanetary disks around
Solar-type stars it appears to be of the order of a 106yrs. The value we have
estimete is so approximatly 106 times longer then the observed time scale for disk
evolution and so the molecular viscosity can not be the source of angular momentum
transport within disks.

1.3.1.2 Turbulent viscosity and its possible physical origin

Given the insigni�cance of direct (molecular) viscosity transport of angular momen-
tum, the central question in the accretion disk theory is so understand which are the
dominant physical mecchanisms responsible for the angular momentum transport
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within disks. In general to evaluate the importance of the inertial e�ect respect to
viscous e�ect for a given �ow, one consider the Reynolds number which is de�ned

Re =
UL

νm
(1.6)

where U and L are the characteristic velocity and lenght scales in the system. Low
Reynolds numbers occurs for laminar �ow which is dominated by viscous forces and
is characterized by smooth, constant �uid motion; high Reynolds numbers occurs
for turbulent �ow which is dominated by inertial forces and tend to produce chaotic
eddies, vortices and other �ow instabilities. For the accretion disks, taking U = cs,
L = H and using the parameters of the previous section (for the estimation of νm),
we have Reynold number extremely large (∼ 1014) and the �ow is therefore expect
to be highly turbulent. Typically, turbulence results in a much greater e�ective
viscosity which produce a much e�cient trasport. Turbulent motion in the accretion
disks can be therefore the key to solve the angular momentum transport problem.

Which might be the physical cause for the turbulence? The turbulence requires
a source (es. an instability) and until now a variety of instability have been proposed
to explane the origine of such turbulence. The most intensively studied mechanism
are self-gravity ([113] Toomre 1964) and magnetorotational instability ([13] Balbus
and Hawley, 1991). These originate from linear instabilities. Hydrodynamic insta-
bilities associated with the disk's radial thermal structure (baroclinic instability)
could also contribute to angular momentum transport, through the non-linear for-
mation of vortices (see the reviews by [8]). An important quantity in turbulent
trasport theories in accretion disk is the shear stress tensor TRφ. It is constituted
by the correlated �uctuations which constituite the source of the transport.

• In the pure hydrodynamic �ow the only relevant �eld is the velocity �uctuation
�eld, and this contribution to the stress tensor (called the `Reynolds' stress)
is TReRφ = −Σ〈uReR uReφ 〉 where uRe is the velocity �uctuation

• In the case of a magnetized disk, the magnetic �eld B provides another source
of transport, leading to the so-called `Maxwell' stress TMRφ = Σ〈uA,RuA,φ〉
where uA = B/

√
4πρ is the Alfvén velocity.

• If the disk is massive enough that its self-gravity is non-negligible, the per-
turbated gravitationl �eld g provides yet another source of transport, in the
form: T gRφ = −Σ〈ugRu

g
φ〉 where u

g = g/
√

4πGρ

Models suggest that protoplanetary disks are likely to have both magnetically
active zones, where the disk is turbulent, and adjacent magnetically `dead-zones'
where the �ow can be laminar (�gure 1.4) (e.g. [52] Gammie 1996; [48] Fromang et
al. 2002; [63] Ilgner e Nelson 2006).



1.3. Formation and Evolution of disks 11

1.3.1.3 α Model of Protoplanetary disks

Absent detailed knowledge of the physical origin of the angular momentum trans-
port, the classical approach to construct a viscous disk models is adopting the `α
prescription' ([107] Shakura & Sunyaev 1973). It postulate a source of disk viscosity
due to turbulence and suggest that whatever is the source of turbulence, the result-
ing stress should be proportional to the local gas pressure. In vertical integrated
form

TRφ =
dlnΩ

dlnR
αP (1.7)

where P = Σc2
s stand for the averange pressure and dlnΩ/dlnR ∼ −3/2 for a

keplerian disk. The proportionality factor α is a dimensionaless quantity, know as
the Shakura-Sunyaev α parameter, that measure the strength of the turbulence in
the disk and so the e�ciency of angular momentum transport due to turbulence.
Another way of expressing the α prescription is by considering the viscosity ν. As
showed in [101] Pringle 1981 the expression 1.7 is equivalent to

ν = αcsH (1.8)

The simplest and usually adopted approach to construct viscous disk model is
to assume that α is a constant. Models of this type have been constructed, for
example, by [19] Bell et al. (1997), [34] D'alessio et al. (1998). The value of α
itself can be constrained by studies of the evolution of the stellar accretion rate ([56]
Hartmann et al. 1998), or by detailed studies of individual systems ([62] Hueso &
Guillot 2005). These methods typically yield α ∼ 102, with large uncertainties.

Although α models provide a parsimonious description of the observations in
terms of a single free parameter, there are compelling reasons to think that they
are not a full description of protoplanetary disks. There are not physical reason
to take α constant. In general α may vary with the temperature, density and
composition of the disk gas and there may even be regions which fail to satisfy
the basic assumtion by not developping turbulence at all ([45] Flock & al. 2011).
Typical values range between α = 10−6 and 10−2, where the former corresponds
to the turbulent strength in dead zones, the latter describes turbulence in disk
atmospheres. Despite the ongoing development of increasingly sophisticated large
scale numerical models, simple α disk model continue to represent a useful starting
point for disk studies and remains the central link between theory and observations.

1.3.2 Photoevaporation

Together with viscous accretion, photoevaporation is one of the main mechanisms
through which primordial circumstellar disks are believed to lose mass and even-
tually dissipate. The basic physics of photoevaporation ([108] Shu, Johnstone &
Hollenbach 1993) is illustrated in Figure 1.5. Ionizing radiation from the central
star, or from external stars, impinges on the disk surface and heats a relatively thin
skin of gas to a temperature Tsurf > Teff . At some radius Rg, the sound speed cs
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Figure 1.5: Schematic illustration of a photoevaporation process. Inside the grav-
itational radius Rg an ionizzed disk atmosphere is formed. Ouside Rg the UV or
X-ray radiation from the central star, or from external stars, heats the disk surface
to a temperature such that the gas is unbound and it can �ow away from the disk.

in the surface layer equals the local Keplerian velocity, where Rg is given by,

Rg =
GM∗
c2
s

(1.9)

At radii R < Rg the warm ionizzed disk atmosphere is gravitationally bound and
at radii R > Rg the gas in the surface layer is unbound and it can �ow freely away
from the disk as a wind driven by thermal pressure gradients. In this simplest
form, then, photoevaporation is a `pure' mass loss process, that diminishes Σ locally
at each radius without causing additional evolution due to angular momentum loss.
More detailed hydrodynamic models show that this division is not entirely sharp but
gas can escape at a reduced rate from radii as small as Rcr w 0.1Rg ([77] Li�man
2003; [2] Adams et al. 2004; [46] Font et al. 2004).

Photoevaportion requires surface temperature high enough that they can only be
attained as a result of disk irradiation by energetic photons: Far-ultraviolet (FUV)
radiation (6eV < hν < 13.6eV ), Extreme-ultraviolet (EUV) radiation (13.6eV <

hν < 0.1keV ) and X-rays (hν > 0.1keV ). Photons in each energy range a�ect
the disks in di�erent ways, and the relative importance of FUV, EUV, and X-ray
photoevaporation is still not well understood

The viscous evolution of the disk, discussed in Sec. 1.3.1, can be strongly a�ected
by this photoevaporation process. Recente models, known as `UV-switch', tried to
incorporate both viscous evolution and photoevaporation by EUV photons ([33]
Clarke et al. 2001, [3, 4] Alexander et al. 2006a,b). According these models the
evolution of the gas disk can be describe in three stages (see Fig. 1.6)

• Viscous phase: (few Myr). At early stage, the photoevaporative wind is neg-
ligible and the disc evolves due to viscous transport of angular momentum.
Most of the disc mass is accreted on to the star, and most of the angular
momentum is transported to large radii.
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Figure 1.6: Evolution of the surface density of a EUV-photoevaporating disk (�gure
from Alexander et al. 2006b [4]). Colour-coded to identify the three stages of
evolution described in the text. Snapshots of the surface density are plotted at t =
0, 2.0, 4.0, 5.9, 6.0, 6.01, 6.02,...,6.18 Myr. At t = 6.20 Myr, the surface density is
zero across the entire grid. After the inner disc is drained, direct photoevaporation
disperses the outer disc very rapidly.

• Gap-opening phase: (. 105 yr). In this phase the (di�use) photoevaporative
wind cuts of the inner disc from re-supply. At this point the inner disk drains
on its own, short, viscous timescale and an inner hole of few AU in radius is
formed in the disk.

• Clearing phase: (few 105 yr). In this phase the inner disk is optically thin to
ionizing radiation, and the disk is dispersed from the inside-out by the (direct)
photoevaporative wind.

Thus, the UV-switch model naturally accounts for the lifetimes and dissipation
timescales of disks as well as for SEDs of some pre-main sequence stars suggesting
the presence of large inner holes. ([28] Calvet et al. 2002; [25] Bouwman et al. 2003;
[47] Forrest et al. 2004; [36] D'Alessio et al. 2005).

More recent photoevaporation models, including also X-ray ([95] Owen et al.
2010) and/or FUV irradiation ([53] Gorti, Dullemond & Hollenbach 2009; [54] Gorti
& Hollenbach 2009), show a similar qualitative behavior to photoevaporation by
EUV alone. However, there are several important di�erences as X-rays and FUV
photons are able to penetrate much larger columns of neutral gas than EUV photons,
they are able to heat gas that is located both deeper in the disk and at larger radii.
Thus, while EUV induced photoevaporation is restricted to the inner few AU of the
disk, X-rays and FUV photons can operate at tens of AU from the star.
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Figure 1.7: Scheme of the structure of a �aring protoplanetary disk (dust compo-
nent). The radii Rg and Rcr are respectively the gravitational and critical radius as
de�ned in Sec. 1.3.2.

1.4 Dust Grain growth and settling

Even though solid particles only represent 1% of the initial mass of the disk, un-
derstanding their evolution is fundamental for disk evolution and planet formation
studies. Solids not only dominate the opacity of the disk, but also provide the raw
material from which the terrestrial planets and the cores of the giant planets are
made. Although viscous accretion and the photoevaporation processes discussed
above drive the evolution of the gas, other processes operate on the solid particles,
most importantly, grain growth and dust settling.

Grain growth and dust settling are intimately interconnected processes and rep-
resents the initial step toward planet formation. Gas motions di�er slightly from
Keplerian motions due to pressure. Small (r ∼ 0.1µm) grains have a large surface-
to-mass ratio and are swept along with the gas. As grains collide and stick together,
their surface-to-mass ratio decreases and their motions decouple from the gas. They
therefore su�er a strong drag force and settle toward the midplane. This increases
the density of dust in the interior of the disk, which accelerates grain growth, and
results in even larger grains settling deeper into the disk. If this process were to
continue unimpeded, the end result would be a perfectly strati�ed disk with only
small grains in the disk surface and large bodies in the midplane. However, because
circumstellar disks are known to be turbulent, some degree of vertical stirring and
mixing of grains is expected ([43] Dullemond & Dominik 2005). Collisions between
particle is due by the fact that they are moving relative to one another. There are
di�erent sources of relative velocities in circumstellar disks: Brownian motion, vth,
sedimentation, vs, and radial drift, vr, turbulence-driven motion, vtur.

A considerable ammount of work has been done to understand the physics of
dust grain growth and sedimentation, including extensive numerical simulation on
the topic, as well as dust coagulation studies in laboratories. Dullemond & Dominik
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(2005) [43] investigated the dust coagulation process in circumstellar disks coupled to
the settling and turbulent mixing of grains ignoring fragmentation and radial drift.
They conclude that these processes are e�cient enough to remove all small grains
(r < 100µm) within 104 yrs. This is clearly inconsistent with the observational
evidence showing the presence of micron sized grains throughout the duration of
the primordial disk phase. The conclusion is that small grains must be replenished
and that the persistence of small grains depends on a complex balance between dust
coagulation and fragmentation ([44] Dullemond & Dominik 2008). Recent, more
realistic models including fragmentation and radial drift con�rm the necessity of
grain fragmentation to explain the ubiquity of small grains in disks [22] Birnstiel,
Ormel & Dullemond 2011; [26] Brauer, Dullemond & Henning 2008). These same
models also con�rm the severity of the problem known as the `meter-size barrier ',
a physical scale at which solids are expected to su�er both destructive collisions
and removal through rapid inward migration ([116] Weidenschilling 1977). Even
though several possible solutions have been proposed, including the formation of
planetesimals in long-lived vortices (e.g., [57] Heng & Kenyon 2010), or via the
gravitational instability of millimeter-sized chondrules in a gas de�cient subdisk
(e.g.,[123] Youdin & Shu 2002), overcoming this barrier remains one of the biggest
challenges for planet formation theories ([32] Chiang & Youdin 2010).

1.5 Overview and aims of the thesis

In this thesis we study the structure and the emission properties at (sub-)mm wave-
lenghts of circumstellar disk around pre-main sequence stars. In particular, the main
purpose is to investigated how the spatial variation of the dust opacity can in�uence
the disk thermal and geometrical structure and so a�ect its emission properties.
In order to reach this aim, we construct a circumstellar disk structure model which
include the possibility to take into account (in parametric way) possible spatial vari-
ation of the grain size distribution and dust-to-gas ratio. Moreover we investigate
if, a possible radial variation of a dust grain size distribution can be constrained
comparing our two layer disk model, against spatially resolved multi-frequency ob-
servations at mm-wavelenghts

The thesis is organized as follow:
Chapter 2 give a general introduction of the models used to interprete the

dust thermal emission from circumstellar disks which compute a self consistent disk
structure. This overview is restricted primaly to circumstellar disk models aimed
at a comparison with observation using a relative simple density distribution. So
we are not intersted to those models which, for example, coupling the RT equation
with the full HD or MHD equations. We will describe the density distributions and
dust opacity models usually adopted and we will summarize the di�erent numerical
approaches often adopted to solve radiative transfer problem pointing out, for each
one, its advantages and disasvantages.

Chapter 3 describes a new developed code which allow a self consistent compu-
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tation of the structure of a steady passive thin disk in vertical hydrostatic equilibrium
under the single annulus approximation (the so called 1+1Disk model). In order to
compute a self-consistent thermal and geometrical disk structure the model numer-
ically solve the hydrostatic equilibrium equation coupled to the radiative transfer
equation in vertical direction. In particular the RT problem is solved with the Vari-
able Eddington Factors (VEF) method which is been proved by [39] Dullemond et
al. (2002) to be a fast and e�cient method to �nd the solution of the radiative
trasfer equation in circumstellar disk. In order to investigate the spatial variation of
the dust opacity, the model include the possibility to have for each single radius and
height in the disk a population of dust grains that can be di�erent in terms of max-
imum grain size and dust-to-gas ratio. Using di�erent (parametric) Rz-distribution
for maximum grain size and dust-to-gas ratio the model predict change in the disk
structure and dust continuum emission and so can be used to investigate the spatial
variation of the dust property and try to constrain the grain growth and settling
processes.

Chapter 4 describes a more sempli�ed circumstellar disk model which allow,
as the 1+1D model, a self consistent computation of the disk structure. This model
solve the radiative transfer problem in simple way adopting the so called `two layers'
approximation �rst proposed by [30] Chiang & Goldreich 1997. Using the capability
of our two-layer model to have a radial variation of the dust properties, in particular,
the possibility to modify the radial pro�le of the grain size distribution, we have used
it to interpret observations at sub-millimiter and mm wavelenghts of disk around
pre-main sequence stars.

Chapter 5 summarizes the main results discussed in the thesis and we discuss
possible future developments.
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A self consistent disk structure model is required to interpret the dust thermal
emission from circumstellar disks. The main objective of the models is the deter-
mination of the density and temperature structure of the disk. Such disk models
have been developed and improve over many years and can operate at several levels,
from simple vertically isothermal disk with power law radial temperature distribu-
tion (e.g., [16] Beckwith et al. 1990) to the more recent full time dipendent 3D
(magneto/radiation) hydrodynamics (e.g., [50] Fromang & Papaloizou 2006, [51]
Fromang S. & Nelson 2009). This last approach is obviosly very powerful as it in-
clude detailed physic, but it su�er for large computation cost and are so less pratical
and often requires strong simplifying assumption in the radiative transfer to keep
the problem tractable. We review in this chapter circumstellar disk models restrict-
ing primaly aimed at a comparison with observation. In Sec.2.1 we will describe
the density distributions usually adopted for protoplanetary disk. In Sec.2.2 we will
summarize the dust opacity models often used to describe the optical properties of
circumstellar dust grain. We will then describe in Sec.2.3 the Radiative Transfer
(RT) problem that has to be solved in order to compute the disk thermal struc-
ture and we will give a brief summary of the numerical approaches often adopted
pointing out its advantages and disasvantages.
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2.1 Disk Density Structure

In order to solve the stationary continuum RT equation (see Sec. 2.3) we need
to specify the dust density distribution ρd(x). As we already said, we are not
intersted to those models which coupling the RT equation with the full HD or MHD
equations, but to these one that solve the RT problem using a relative simple density
distribution. Moreover it is usually assumed that the gas and dust are well mixed
throughout the disk with a constant dust-to-gas ratio (ρd/ρg = 0.01).

One approach often used is to specify the gas surface density pro�le Σg(R) =∫ +∞
−∞ ρg(R, z)dz

1. For a given Σg(R) pro�le, the density distribution ρg(R, z) can
then be found integrating the vertical hydrostatic equilibrium equation:

∂Pg(R, z)

∂z
= −ρg(R, z)g(R, z)z (2.1)

where Pg the gas pressure, gz is the z component of the stellar gravity. A self
consistent density structure can be found by iterating between the above equation
and the RT equation ([92] Nomura 2002, [39] Dullemond 2002, [114] Walker et al.
2004). The simplest and very common approach is to use for Σg(R) a truncated
power law approximation

Σg(R) = Σ0

(
R0

R

)p
with Rin < R < Rout (2.2)

where Σ0 is the surface density at an arbitrary radius R0 and Rin,Rout are re-
spectively the disk inner and outer radii. However this kind of distribution has
no theoretical and abservational justi�cation. Infact no disk accretion model (for
isolated disk) predict disk structure with a sharp outer edge and morever this dis-
tribution fails to explain the di�erences in the radial extentions of the dust and
the gas emission the are observed in a number disks around intermediate mass pre-
main-sequance stars ([96] Piétu et al.2005; [65] Isella et al. 2007; [61] Hughes et al.
2008).

A more physical approach is to use one result of thin accretion disk. The key
equation that describing the viscous evolution of a thin accretion disk is the di�usion
equation for surface density (B.4) (see Appendix B for a brief review). It's well know
that exist a series of analytic solutions (steady state and time-dependent solution) of
this equation (B.4) that can be obtained assuming a given function for the viscosity
ν. A time-dependent solution can be obtained in linear case assuming a power law
approximation of the viscosity ν ≺ Rγ . In this case infact the Eq. (B.4) become
linear and an analitic solution can be obtained ([81] Lynden-Bell & Pringle 1974):

Σ(R̃, t̃) =
C

3πν1R̃γ
t̃

[
− (5/2−γ)

(2−γ)

]
e

[
− R̃

(2−γ)

t̃

]
(2.3)

where C is a normalization constant, R̃ = R/R1 is the disk radius in units of radial
scale factor R1, ν1 = ν1(R1) is the disk viscosity at radius R1, γ is the slope of the

1we use here a cylindrical (R, z) coordinate system
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Figure 2.1: Evolution of the surface density according to Eq. (2.3) for γ = 1,
R1 = 30AU , ν1 = 1015 and C = 1017. The three lines show, from top to bottom,
the self-similar solution at increasingly large times (t̃ = 1, 3, 10, respectively). The
red points correspond to the surface density at the transitional radius Rtr (see
Appendix B for more details)

disk viscosity, t̃ is the non-dimensional time, t̃ = t/ts+1, t is the age of the disk, and
ts is the viscous scaling time at the radius R1 de�ned by ts = 1/[3(2− γ)2]R2

1/ν1.
How we can see, in contrast to the truncated power law, the disk has an outer edge
that falling o� exponentially and recent study ([61] Hughes et al. 2008; [66] Isella et
al. 2009; [6] Andrews et al. 2009) have demostrated a more accurately reproducing
the observed dust distribution in protoplanetary disks with respect to a power-law
pro�le.

Another approach also used is to assume a given dust density distribution. Most
applications ([122] Wood et al. 2002, [121] Wolf et al. 2003, [98] Pinte et al. 2008,
[105] Sauter et al. 2009) have adopted, for example, the parametrized dust density
distribution

ρd(R, z) = ρ0

(
R

R0

)α
exp

(
−1

2

(
z

h(R)

))
(2.4)

where ρ0 is the midplane density at R = R0 and h the disk scale height

h(R) = h0

(
R

R0

)β
(2.5)

where α, β and h0 are the geometrical parameters.
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2.2 Dust Opacity model

One important ingredient of a circumstellar disk model is the opacity distribution
κν . This quantity infact contribute to regulates the radiative transport and so
controls the global energy redistribution throughout the disk. As the dust grains
absorb radiation much more e�ciently then the gas, they are the main source of
opacity in the disk ([106] Semenov et al. 2003) and so they are usually assumed to
be the only source of opacity (κ = κdust). Understand the dust opacity distribution
presented in the disk is so essential to characterised their thermal and geometrical
structure and consequently its emission properties.

The opacity of a population of dust grains depend on di�erent properties (shapes,
chemical compositions, porosity and sizes) of the grains ([87] Miyake & Nakagawa
1993; [99] Pollack et al. 1994; [37] Draine et al. 2006). To compute the dust opacity
we need to specify the dust e�ciency Qν and this is usually done, as we do, using
the Mie Theory (see Appendix A.1 for a brief review). It is an exact theory based
on classical electrodinamic for a continuum medium that can be applied at very
idealized grain geometry. In the simpler case spherical grains are assumed. In order
to determine the Mie coe�cients an and bn, the optical constant m of the grain
material has to be speci�ed (also called refractive index). This quantity is de�ned
as

m =
√
εµ (2.6)

where ε is the dielectric permeability and µ the magnetic permeability of the mate-
rial. It is clear from the de�nition (2.6) that m contain information of the physical
nature of the material and so describe the manner in wich a plane electromagnetic
wave progresses through the material. The optical constant is a frequency depen-
dent quantity (despite the denomination `constant') and is a complex dimensionless
number (mν = nν+ikν) with real part n and imaginary part k. One online database
of optical constant is the HJPDOC (Heidelberg-Jena-St.Petersburg-Database

of Optical Constants) 2. The database consists of tabulated data for several ma-
terials, each of one generally contain three columns: (1) wavelength or wavenumber,
(2) real part n of the optical constant, (3) imaginary part k of the optical constant.
In the case of a population of spherical grains of radius a with uniform chemical
composition, the mass opacity coe�cient κν can be written

κν =
πa2Qν
4π
3 ρda

3
=

3

4a

1

ρd
Qν (2.7)

where ρd is the solid density of the grain and 3/4a is the geometrical cross section
to volume ratio for particles for spheres.

During the evolution the dust grains are a�ected by di�erent kind of processes
which may take place in the disk, such as turbulence, settling, radial drift, etc.
([117] Weidenschilling 1989, [58] Henning & Stognienko 1996, [17] Beckwith, Hen-
ning & Nakagawa 2000) and the grain probabily become inhomogeney with porous

2http://www.mpia-hd.mpg.de/HJPDOC/
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Figure 2.2: Mass opacity κν of a population of composite particles with a power law
size distribution (2.10) with q = 3.0, amin = 0.005µm. The particles are made of
(vol. perc.) 7% astronomical silicates, 21% carbonaceous material and 42% water
ice and 30% vacuum. (Left panel) κν in function of the wavelenght for 3 di�erent
maximum grains size. (Right panel) κν in function of tha maximum grain size for 3
di�erent wavelenghts.

structures. In this case the dielectic function within them varies from place to place
(ε = ε(x)). The estimatation the optical properties of such composite particles is
usually done using the e�ective-medium theory (EMT). The basic idea of the EMTs
is to derive an e�ective dielettric function εeff representig the mixture as a whole
i.e. an homogeneous grain with this dielectric function shall show the same charac-
teristics in absorbtion and scattering as the original inhomogeneous particle. Two
di�erent approach are typically used: the Maxwell-Garnett approach ([85] Maxwell
Garnet 1904) and the Bruggermann approach ([27] Bruggeman 1935) (see appendix
A.2 for a brief review). Once determined, εeff is then used to derive the absorb-
tion e�ciency of the grains Qabs(a, ν) using the Mie theory. The e�ective optical
constant meff = n − ik to be used follow from εeff = m2

eff . The mass opacity
coe�cient κν for a population of composite grains can be written as in (2.7) with a
dust density given by

ρd =
∑

fiρi (2.8)

where fi and ρi are respectively the volume fraction and grain solid density of the
i-esimo homogeneous component.

Coauglation and fragmentation processes in the disk will lead to a population
of dust grain with a certain size distribution n(a). One assume, usually, that n(a)

follows a truncated power law distribution:

n(a) ∝ a−q with amin < a < amax (2.9)

where amin, amax are respectively the minimum and maximum grain size and q is
the power law index. The mass opacity coe�cient κν for a population of grains with
size distribution n(a), can be written

κ(ν) = −
π
∫
n(a)a2Qabs(a, ν)da

(4π/3)ρd
∫
n(a)a3da

(2.10)
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where ρd is the density of the composite dust grain. In �gure 2.2 is shown, for
a population of composite particles with a power law size distribution, the dust
opacity distribution in function of the wavelenght (left pannel) and in function of
the maximum grain size (right pannel).

2.3 The RT problem

Given the dust density structure and the speci�ed the optical propertied of the
dust grains, the RT problem can be solved. In this part lies the main complexity
of the disk models and implement an e�cient and relatively fast algoritm which is
appropriated with the physical condition of the circumstellar disk is essential.

Solving the RT problem in a dusty circumstellar disk aims at determining the
speci�c intensity I(ν,x,n) of the radiation �eld at each point x, direction n and
frequency ν. This is achieved by solving the stationary transfer equation

n∇xI(ν,x,n) =− [κ(ν,x) + σ(ν,x)]I(ν,x,n)

+ κ(ν,x)B(ν, Td(x))

+
σ(ν,x)

4π

∫
Ω
p(ν,n,n′)I(ν,n,n′)dΩ′

(2.11)

where κ(ν,x) and σ(ν,x) are the absorbition and scattering coe�cients (per volume
unit). The quantity p(ν,n,n′) denotes the probability that radiation is scattered
from the direction n' into n, Ω is the solid angle, Bν is the Plank function and Td
is the dust temperature.

Intensity and dust temperature are not indipendent. The radiation �eld deter-
mines the temperature and in turn, the dust re-emission contributes to the radiation
�eld. This couples the partial di�erential RT equation to the local energy balance

equation which can be write in as:

4π

∫ ∞
0

κν(z)Bν(Td(x))dν = 4π

∫ ∞
0

κν(z)Jν(x)dν +Q(x) (2.12)

where Q is the absorbed energy (per volume element) from extra sources, like viscous
heating or cosmic ray, and Jν is the mean intensity de�ned as the average (over all
solid angles) of the speci�c intensity

Jν(x) =
1

4π

∫
Ω
I(ν,x,n)dΩ (2.13)

The equation 2.12 describe how dust particles are heated to the temperature Td such
that the rate of energy absorbtion in a elementary volume (right side) is exactly
balanced by the rate of energy emitted in the same volume (left side). The system
of Eqs. 3.11, 3.12 and 3.49 completly de�nes the radiative transfer problem.
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2.3.1 Numerical Methods

Over the last decade many dust continuum radiative trasfer programs and algo-
rithms were developed to interpret the dust thermal emission from circumstellar
disks. Numerical algorithms often used to solve the RT problem may be roughly
classi�ed in three categories: Monte Carlo methods, Discrete Ordinate methods and
Angular Moment methods (the last two are also called grid-based methods as they
are characterized by a discretization of also the photon propagation direction besides
the spatial domain). Here we brie�y present some basic concepts of these numerical
techniques and point out its advantages and disadvantages.

2.3.1.1 Monte Carlo (MC) Methods

Monte Carlo (MC) methods solve the RT problem using a stocastic approach. The
radiation �eld is partitioned in equal-energy, monocromatich `photon packets' that
are emitted stochastically by the radiation sources. The algorithm follow each in-
dividual `photon packet' that propagate through the circumstellar enviroment until
they exit the computation grid. The propagation process is governed by scattering,
absorbtion and re-emission events that are controlled by the optical properties of
the medium.

These methods have been applied for 2D-3D con�guration in MC3D ([120] Wolf
2003), MCTRANSF ([91] Nicolini et al. 2003), RADMC ([42] Dullemond 2004),
MOCASSIN ([89] Ercolano et al. 2003), TORUS ([59] Herries 2000), MCFOST
([97] Pinte et al 2006).

These methods have the advantage to be very �exible, since the concept of
following photon packages is in principal applicable to arbitrary multidimentional
con�guration. Infact they can easily deal with complicated density distribution
and arbitrary scattering and polarization. However, they have the drawback to
presence random noise in the results and there is no global error control so one
is never completely sure that a true solution has been reached. Moreover, it can
become computationally expensive when the optical depth becomes very large as it
is require a high number of photons to cover re-emission in all direction and this
number increase with the optical depth.

2.3.1.2 Discrete Ordinate methods

Discrete Ordinate methods solve the RT equation using a deterministic approach.
The solution is obtained using an iterative procedure that solve iteratively the RT
equation and the local balance equation until the convergence criterio is reached.
The two most used procedure are the ordinary `Lambda Interaction' (LI) and the
`Accelerator Lambda Interaction' (ALI). The LI method �rst evaluate Iν(x,n) (Eq.
2.11), then Jν(x) (Eq. 2.13) and �nally T (x) (Eq. 2.12) and iterate this procedure
until convergene is reached. The ALI procedure, which converge faster, is a vari-
ant of the LI procedure, involving an approximate operatore Λ∗. Integration of the
formal RT equation is often performed by using approach based on �nite di�erence
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scheme (like in STAINRAY) or by using the method of characteristics (like in RAD-
ICAL). Inoltre, di�erent acceleration algorithms have been developed to speed up
the iterative convergence to �nd the solution of the RT equation.

These methods have been developed mainly for line transfer, for which it has
proven to be reasonably e�ective, and have not been widely used for dust continuum
transfer. They have been applied in STAINRAY ([111] Steinacker et al. 2003),
RADICAL ([40] Dullemond et al. 2002).

The Discrete Ordinate methods have the advantage to not involve random noise
like in MC methods and provide an error control. However they are less �exible
then MC and may be quite demanding. Moreovor, in optically thick regions they
converges, like in MC, very slowly.

2.3.1.3 Angular Moment methods

Another type of deterministic algorithms to solve the RT problem are the Angular
Moment methods. These methods solve the system of moments equation tuncated,
usually at second order, with a closure relation (see Sec. 3.5 for more details). There
is no easy way to formulate a closure relation. The simplest approach is to assume
the so-called di�usion approximation. This approach has been applied, for example,
by [34] D'Alessio et al. (1998), [84] Malbet et al. (2001). It has the advantage to
solve the RT problem in a fast computation time. However, this approach is not
applicable within optically thin regions, where the di�usion approximation is not
valid anymore and the radiation �eld may signi�cantly deviate from isotropy. For an
accurate treatment a variable Eddington factor has to be calculated. This approach
has been applied in RADICAL ([40] Dullemond et al. 2002) where the closure
relation is obtained iteratively from the formal solution with the source function
provided by the solution of the moment equations.

As the Discrete Ordinate methods, they have the advantage to not involve ran-
dom noise and provide an error control. Moreover, they solve the RT problem from
very low up to extremely high optical depths with only a few iterations (less then
10 usually). It converge, therefore, more quickly then the ALI procedure. However
this approach is less �exible then MC and may be quite demanding.
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In this chapter we present the 1+1D circumstellar disk models which allow a
self consistent computation of the structure of a steady passive thin disk in ver-
tical hydrostatic equilibrium under the single annulus approximation. In order to
solve a self-consistent thermal and geometrical disk structure the model numerically
solve the hydrostatic equilibrium equation coupled to the radiative transfer equa-
tion in vertical direction. Moreover, it include the possibility to have for each single
radius and height in the disk a population of dust grains that can be di�erent in
terms of maximum grain size and dust-to-gas ratio. Using di�erent (parametric) Rz-
distribution for maximum grain size and dust-to-gas ratio the model predict change
in the disk structure and dust continuum emission and so can be used to investigate
the spatial variation of the dust property and try to constrain the grain growth and
settling processes.

The chapter is organized as follow: In Sec. 3.1 we introduce the 1+1D disk
structure model. In Sec. 3.2 we show the iterative procedure adopted in order to
have a disk in vertical hydrostatic equilibrium. In Sec. 3.3 we analyse the two
basic equations `Radiative Trasfer equation' and `Hydrostatic Equilibrium equation'
we need to solve in order to compute a self consistent disk structure. In Sec. 3.4
we discuss how we solve the extintion of the primary stellar radiation using the so
called `irradiation-angle description'. In Sec. 3.6 we present the `Variable Eddington
Factor ' (VEF) method we use to solve the RT problem. In Sec. 3.7 we show the
adopted (paramteric) distribution for the dust-to-gas ratio η and maximum grain size
amax. In Sec. 3.8 we show how we compute the observable: SED and emission map.
In Sec. 3.9, 3.10 we illustrate the basic results of the annulus structure calculation
of a �ducal annulus model and we show how di�erent η(z) and amax(z) distribution,
a�ect the structure and emission properties of the annulus. In Sec. 3.11, 3.12 we
illustrate the basic results of the disk structure calculation of a �ducal disk model and
we show how the di�erent η(R, z) and amax(R, z) distribution, a�ect the structure
and emission properties of the disk.

3.1 Introduction: The 1 + 1D Disk Model

Since the initial models of viscous accretion disks by [107] Shakura & Sunyaev
(1973) and [81] Lynden-Bell & Pringle (1974), the physics of the close environment
of T Tauri stars (TTS) has been extensively studied in order to interpret their
spectral energy distribution (SED). For the sake of simplicity, models traditionally
separated disks into two categories, sometimes called active disks, on one hand, in
which viscous dissipation is predominant, and passive disks, on the other hand, for
which irradiation by the central star is the main heating process. Early models
used quasi-Keplerian steady accretion disks, assumed to be geometrically thin for a
wide range of accretion rate; they predicted a �xed slope for the infrared spectrum:
λFλ ∼ λ−4/3. However many TTS present �atter SEDs, and disk �aring was among
the �rst attempts to explore disk vertical structure as an explanation for such SED
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�attening ([1] Adams et al. 1987; [71] Kenyon & Hartmann 1987): in a �ared

disk, the disk opening angle (or the ratio between the scale height and the radius)
increases toward the outer disk. The grazing angle at which the stellar radiation
impinges on the disk changes with radius allowing for an increase of the heating
of the outer regions of the disk. Since then, several models have been proposed in
order to explain both standard SEDs and �atter ones.

The detailed vertical structure of a circumstellar disk can be computed by solving
the equations of vertical pressure balance coupled to the equation of radiative trans-
fer. An analytical study of the radiative transfer in vertical structure of disks was
�rst carried out by [60] Hubeny (1990) for active disks, by [83] Malbet & Bertout
1991 for passive disks. Later on, [30] Chiang & Goldreich (1997) used a simpli-
�ed two-layer passive disk model based on the same super-heating mechanism and
derived SEDs, con�rming conclusions of Malbet & Bertout 1991 and producing re-
sults consistent with observations. Malbet et al. 2001 [84], then, generalized to
disks heated by several processes.

On the other hand, numerical integration of the equations of radiative transfer
was carried out by varius authors in order to derive the vertical structure of accretion
disks. [18] Bell & Lin (1994); [19] Bell et al. (1997) developed an active disk
model in order to explain FU Orions outbursts; [34, 35] D'Alessio et al. 1998, 1999
dealt with the more general case solving the complete 1+1D disk structure solving
the radiative transfer in di�usion limit approximation both by viscous heating and
stellar irradiation. [40] Dullemond et al. 2002 apply exact 1D wavelenght-dependent
radiative transfer for the vertical structure.

All these models cited above, compute the vertical structure adopting the so
called single annulus approximation: i.e. the disk is considered as a set of concentric
cylinders of in�nitesimal width. Each cylinder is itself regarded as a plane-parallel
atmosphere of dust and gas layer each assumed to be indipendent of the other
and costituite an indipendent 1D vertical radiative transfer problem. The basic
assumption is that the radial transfer of energy is smaller then the vertical transfer.

3.2 Iterative procedure to reach vertical hydrostitic

equilibrium

In order to compute a self-consistent temperature and density distribution of a disk
in hydrostatic equilibrium we adopt an iterative procedure where we recomputed
iteratively the disk structure until the gas density pro�le converge. From the inner
radius Rin to the outer radius Rout, we solve at each annulus (up to the deplection
height zdepl 1) the following sequence of steps (Fig. 3.1):

1. We compute the local ammount of energy Q(R, z) that the stellar radiation
release on the dust grains using the irradiation-angle description' (Sec. 3.4)

1The dust deplection height is set by the amax(R, z) distribution, i.e. corrispond to the height

z where the maximum grain size reach the minimum size
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Figure 3.1: Scheme of the adopted iterative procedure to reach the vertical hydro-
static equilibrium.

where the angle αirr(R) at which the stellar radiation incide on the surface
height zs(R) is determined.

2. We compute the dust thermal structure Td(R, z) of the disk solving the 1D
vertical radiative trasfer problem using the `Variable Eddington Factor ' (VEF)
method as described in Sec. 3.5.

3. Once we found the dust temperature strati�cation, we solve the vertical hy-
drostatic equilibrium equation (Sec. 3.3.2) (assuming gas and dust in thermal
equilibrium Tg = Tg) in order to �nd the gas density structure ρg(R, z) at
which corrispond a new pressure heigh Hp(R).

4. The new pressure height Hp(R) is used to compute:

(a) The dust-to-gas ratio η(R, z) (Eq. 3.71) from which we can compute a
new dust density structure ρd(R, z).

(b) The maximum grain size amax(R, z) (Eq. 3.71) from which we can com-
pute a new dust opacity structure kν(R, z) (Eq. 2.10)

From ρd(R, z) and kν(R, z) we can then compute the new surface height zs(R)

(Eq. 3.47) which will be used to determinate the incidente angle αirr(R).
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It should be noted that Hp(R) can slightly vary throughout the iteration
procedure and so the kν(R, z) and ρd(R, z) distribution will be di�erent respect
to the initial con�guration when the convergence criterio is reached.

Once obtained the entire structure of the disk we compare the new gas density
distribution with that of the previews iteration and we iterate the entire procedure
until a converged solution for ρg(R, z) is reached i.e. when the relative di�erence in
density between successive iterations drops below the convergence criterio

max
0≤i≤nR−1
0≤j≤nz−1

(
|ρoldg − ρnewg |
ρoldg + ρnewg

)
< 10−2 (3.1)

3.2.1 Initial condition

We solve the iterative procedure described above, departe from a simple initial

con�guration, corrisponding to a vertically isothermal thin disk in hydrostatic equi-
librium. In this case the pressure balance equation (3.30) can be easily integrate
(see Sec. 4.2.1) leading to a gas density distribution with a vertical gaussian pro�le:

ρg(R, z) =
Σg(R)√
2πHp(R)

exp

(
− z2

2Hp(R)2

)
(3.2)

where Σg(R) is the gas surface density distribution and the quantity Hp(R) denotes
the pressure scale height of the gas given by

Hp(R) =
cs(R)

Ωk(R)
(3.3)

where Ωk(R) =
√
GM?/R3 is the local angular velocity, cs(R) =

√
kBTg(R)/µmp

is the isothermal sound speed, kB and G are the Boltzman constant and the grav-
itational constant,respectively, µg is the mean molecular weight, mp is the mass of
a proton and Tg(R) is the gas temperature pro�le. For the initial temperature we
use a simple pro�le corrisponding to the midplane temperature of a disk irradiated
under a constant �aring angle of αirr(R) = 0.05. By equating the irradiation �ux
Firr = αirrL?/(4πR

2) to the cooling �ux Fcool = σsT (R)4 one can solve directly for
T (R), obtaining:

Tg(R) = α
1/4
irr

√
R?
R
T? (3.4)

where L?, R?, and T? are respectively the luminosity, radius and e�ective temper-
ature of the central star. Given the pressure height Hp(R), the initial dust-to-gas
ratio η(R, z) and maximum grain size amax(R, z) are given respectively by Eqs.
3.70 and 3.71 from which we can then compute respectively the initial dust density
structure ρd(R, z) and the initial dust opacity structure kν(R, z) (Eq. 2.10).



30

Chapter 3. 1+1D Disk Structure Model with spatial variation of dust

property

3.3 Basic Equations and adopted assumptions

In this section we analyse the two basic equations `Radiative Trasfer equation' and
`Hydrostatic Equilibrium equation' that we need to solve in order to compute the
disk structure. This equations will be solved under a certain number of assumptions
and sempli�cations which will allow us to simplify the problem.
As we are in single annulus approximation, we will con�ne our attention exclusively
to a plane parallel geometry (Fig. 3.2). In this case the intensity of the radiation
�eld is function of the frequency ν, the height z in the direction normal to the plane
of strati�cation and the polar angle θ i.e the angle between a ray and z-direction
(µ = cosθ).

3.3.1 1D RT Problem in a plane-parallel dusty medium

Solving the RT problem in a plane-parallel dusty medium, aims at determining the
speci�c intensity I(µ, ν, z) of the radiation �eld at each hight z, frequency ν and
direction µ. Starting with the boundary value, one can calculate this intensity in
the considered domain by solving the 1D vertical stationary transfer equation

µ
dI(µ, ν, z)

dz︸ ︷︷ ︸ =

variation of Iν

along a direction µ

−χ(ν, z)I(µ, ν, z)︸ ︷︷ ︸
extintion

by matter

+ ε(ν, z)︸ ︷︷ ︸
re-emission

by matter

(3.5)

where χ(ν, z) = κ(ν, z) + σ(ν, z) is the extinction coe�cient (per unit of volume)
given by the sum of the pure absorbtion κ and scattering σ coe�cients (in general
due to both dust grains and gas species) and ε(ν, z) is the emission coe�cient. The
Eq. 3.5 show that, for each direction, the intensity Iν (per unit lenght) decrease by
an amount χνIν and increase by εν . The RT equation is usually written in term of
the source function Sν = εν/χν . In this way the (3.5) become:

µ
dIµ,ν(z)

dz
= χν(z) (Sν(z)− Iµ,ν(z)) (3.6)

The source function describe how photons originally traveling with the beam are
removed and replaced by photons from surrounding matter. For example, for a
dusty medium with grains at temperature Td and assuming isotropic scattering, the
source function can be written

Sν =
κνBν(Td) + σνJν

χν
(3.7)

where Jν is the mean intensity of the radiation �eld (Eq. 3.49). In more general
case, the knowledgment of this function can require complex calculation.

To solve the equation (3.6) we make a certain number of assumptions. We focus
on the solution for continuum dust emission neglecting therefore the gas contribution
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Figure 3.2: Schematic illustration of an annulus described as a plane parallel dusty
medium. Note that there are inward (µ < 0) and outward (µ > 0) directed streams
of radiation. The boundary conditions necessary for the solution are speci�ed at the
top of the annulus (τ = 0) and at the midplane (τ = τmax).

and its emission lines and for semplicity we also ignore the scattering opacity. In
this way the extintion is due only to the continuum absorbtion by dust grains

χν(z) = κdustν (z) (3.8)

We make, moreover, the assumption of local thermodynamic equilibrium (LTE) con-
dition. According the Kirchho�-Plank relation in this case the grain emission is only
a function of dust temperature and is given by εν = κνBν(Td); therefore the source
function is identical to the Planck function

Sν(z) = Bν(Td(z)) (3.9)

Under the assumption of LTE, all the dust grains of each size have the same tem-
perature Td at each position. The RT equation (3.6) can then be writen in LTE
as:

µ
dIµ,ν(z)

dz
= ρd(z)kν(z) (Bν(Td(z))− Iµ,ν(z)) (3.10)

where we have considered the opacity coe�cient kν (per unit of matter) (κν = ρdkν
where ρd is the dust density). So in our case to solve the RT equation we need to
calculate the dust temperature.
Regarding the source function Sν and the opacity κν as given functions, the Eq.
3.10 is a linear �rst order di�erential equation and it's possible provide the so called
`formal solution':

Iµ,ν(z) = Iν(z0)e−∆τν +

∫ ∆τν

0
S(τ ′ν)e−(∆τν−τ ′ν)dτ ′ν (3.11)

where ∆τν is the optical depth di�erence between z0 and z.



32

Chapter 3. 1+1D Disk Structure Model with spatial variation of dust

property

Intensity and dust temperature are not indipendent. The radiation �eld deter-
mines the temperature and in turn, the dust re-emission contributes to the radiation
�eld. This couples the partial di�erential RT equation to the local energy balance

equation which can be write in LTE as:

4π

∫ ∞
0

ρd(z)kν(z)Bν(Td(z))dν︸ ︷︷ ︸ =

energy emitted by

volume element

4π

∫ ∞
0

ρd(z)kν(z)Jν(z)dν + Q(z)︸ ︷︷ ︸
energy absorbed by

volume element

(3.12)

where Q is the absorbed energy (per volume element) from extra sources and Jν
is the mean intensity de�ned as the average (over all solid angles) of the speci�c
intensity

Jν(z) =
1

2

∫ 1

−1
Iµ,ν(z)dµ (3.13)

The equation (3.12) describe how dust particles are heated to the temperature Td
such that the rate of energy absorbtion in a elementary volume is exactly balanced
by the rate of energy emitted in the same volume. As other sources of energy, we
consider only the direct stellar radiation (see Sec. 3.4). If there is extra source of en-
ergy then the radiation, like viscous heating or cosmic ray, this can be easly included
by adding the corresponding term on the right hand side of balance equation. The
system of Eqs. 3.11, 3.12 and 3.13 completly de�nes the radiative transfer problem.

3.3.2 Vertical Hydrostatic equilibrium

Under the assumption that the radiation pressure and the magnetic �eld do not
in�uence the disk structure, the physical quantities describing the gas component
of the disk (ρg, Pg, ug) must satisfy the equations of viscous �uid dynamics:

∂ρg
∂t

+∇ · (ρgug) = 0 (Mass conservation) (3.14)

ρg

[
∂ug
∂t

+ (ug ·∇)ug

]
= −∇Pg +∇ · σ − ρg∇Φ (Equation of motion)(3.15)(

∂

∂t
+ ug ·∇

)(
Pgρ

−γ
g

)
= 0 (Energy Equation) (3.16)

where ρg is the gas density, Pg the gas pressure, Φ the gravitational potential and
σ is the stress tensor describing the e�ect of viscous forces. Here we limit ourself
to a steady state disk wherein all quantities are independent of time ( ∂∂t = 0). The
equation to solve are then:

∇ · (ρgug) = 0 (3.17)

ρg(ug ·∇)ug = −∇Pg +∇ · σ − ρg∇Φ (3.18)

(ug ·∇)
(
Pgρ

−γ
g

)
= 0 (3.19)
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We assume that the gravity is dominated by the central star
(disk self-gravity negligible). In this way the gravitational potential Φ(R, z)

is simply given by

Φ = − GM

(R2 + z2)1/2
(3.20)

We suppose then an axisymmetric disk where the physical quantities do not change
if we move along the direction of rotation. It's so convenient to use a cylindrical

polar coordinate system with origin at the center of the disk and with the axis z
coincident with the axis of symmetry. In this way the variables describing the system
are not functions of the azimuthal coordinate φ ( ∂∂φ = 0) but depend only on R e
z. The equations 3.17, 3.18 and 3.19 written in components are:

1

R

∂

∂R
(ρgRuR) +

∂

∂z
(ρguz) = 0 (3.21)

(ug ·∇)uR −
u2
φ

R
= − 1

ρg

∂Pg
∂R

+
1

ρ
[∇ · σ]R −

∂Φ

∂R
(3.22)

(ug ·∇)uφ +
uRuφ
R

=
1

ρg
[∇ · σ]φ (3.23)

(ug ·∇)uz = − 1

ρg

∂Pg
∂z

+
1

ρg
[∇ · σ]z −

∂Φ

∂z
(3.24)

(ug ·∇)
(
Pgρ

−γ
g

)
= 0 (3.25)

where:

ug ·∇ = uR
∂

∂R
+ uz

∂

∂z
(3.26)

We assume, moreover, a geometrically thin disk, i.e. the disk �ow is very con�ned
to the midplane. This means that the typical length in the vertical direction, the
disk thickness H, is much smaller that the radial distance R:

H << R (3.27)

This approximation allow us to simplify the equations to solve:

1. The stress tensor σ can be assumed to be given by classical shear viscosity so
that the only non-vanishing component of σ is the Rφ component, proportional
to the rate of strain RΩ′

σRφ = ρgνR
dΩ

dR
(3.28)

2. There is essentially no �ow in z-direction and so all the velocity terms in this
direction can be neglected
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3. The R and z component of the gravitational �eld become:

gR = −∂Φ

∂R
≈ −GM

R2

(
1− 3

2

z2

R2

)
≈ −GM

R2

gz = −∂Φ

∂z
≈ −GMz

R3

(
1− 3

2

z2

R2

)
≈ −GMz

R3

4. The radial pressure gradient can be neglected with respect to the other force
in radial direction. In this way the equation of radial hydrostatic equilibrium
(3.22) is reduced to:

−
u2
φ

R
= −GM

R2

which express the condition of centrifugal balance (i.e. the radial component
of the gravitational force is balance by the centrifugal force). This lead to a
azimutal gas velocity to be keplerian:

vφ = vK =

(
GM

R

) 1
2

o Ω = ΩK =
(GM)

1
2

R
3
2

(3.29)

In order to verify this assumption we can do a dimensional analysis of the hydrostatic
equations. If we indicate with H and R the typical vertical and radial disk scales and
assuming an isothermal relation P ∼ c2

sρ where cs is the isothermal sound speed, the equation
(3.24) give us:

c2
s

H
∼=
GMH

R3
=⇒ cs <<

(
GM

R?

)1/2

This means that the keplerian azimutal gas velocity of a thin disk is highly supersonic. Doing
now the ratio between the pressure term and gravitational term of the equation (3.22) we
obtain:

c2
s/R

GM/R2
w

c2
s

GM
R

which is very small and it allowed us to neglect the radial pressure gradient with respect to
the other forces in radial direction. In conclusion, in the thin disk approximation we have
that the azimuthal velocity is keplerian and highly supersonic.

Under our assumptions, the gas density distribution ρg(R, z) can be then ob-
tained solving the pressure balance equation:

1

ρg(R, z)

∂Pg(R, z)

∂z
= −GMz

R3
(3.30)

To solve the Eq. 3.30 we relate Pg,ρg and Tg through the equation of state of an
ideal gas:

Pg(R, z) =
ρg(R, z)kBTg(R, z)

µmH
(3.31)

where kB ' 1.38×10−16ergK−1 is the Boltzman constant,mH ∼ mp ' 1.67×10−24g
is the mass of the hydrogen atom and µ is the mean molecular weight (µ = 2.3 for
H2,He misture). In this way the equation to solve can be written:

dlogρg
dz

= −
[
az

Tg
+
dlogTg
dz

]
(3.32)
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Figure 3.3: Balance of forces (pressure Fp = ∂Pg/∂z and gravitational force Fg =

ρgGMz/R3) acting on an element of gas in a thin disk in vertical HS equilibrium.

where a = GMµmH/kR
3. In order to solve this equation and compute the gas

density distribution ρg(R, z), we need to know the gas thermal structure Tg(R, z).
To do this we compute the dust temperature Td(R, z) resolving the continuum
radiative transfer (Sec. 3.5) and we assume that the gas and the dust are in
thermal equilibrium (Td = Tg). The Eq. 3.32 is a 1D ordinary di�erential equation
and we straight integrate from the midplane up to zdepl using the forward Euler
method. We take an arbitrary value for the midplane density ρg(R, 0) and we inte-
grate obtaining the density distribution ρ̃g(R, z). Then we renormalize this resulting
pro�le to the input gas surface density ΣINPUT

g (R).

ρg(R, z) = ρ̃g(R, z) ∗
ΣINPUT
g (R)

Σ̃g(R)
(3.33)

where

Σ̃g(R) = 2

∫ ∞
0

ρ̃g(R, z)dz (3.34)

As our calculation go up to zdepl we actually renormalize the solution to the input
dust surface density. As (Σg/Σd)

INP = Σ̃g/Σ̃d, we can rewrite the (3.33)

ρg(R, z) = ρ̃g(R, z) ∗
ΣINPUT
d (R)

Σ̃d(R)
(3.35)

where

Σ̃d(R) = 2

∫ zdepl

0
η(R, z)ρ̃g(R, z)dz (3.36)

3.4 Extintion of the primary stellar radiation

The �rst problem to solve, in our iterative procedure, is the extintion process of the
primary stellar photons, when they enter into the disk and get absorbed by the dust.
This is modelled using a irradiation-angle description ([30] Chiang e Goldrich 1997)
in which the amount of stellar radiation energy absorbed by the dust is determined
by solving the vertical plane-parallel radiative transfer (pure absorbtion without
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emission εν = 0) with the radiation entering the disk under an angle αirr(R) with
respect to the disk's surface height zs(R). For each annulus we need then to solve the
RT equation (3.10) without source function (Sν = 0) and for the photon propagation
direction µ = cosθ ∼ α (due to the typical shallow incidente angle α � 1) which
give the solution

Iµ,ν(z) = I0,νe
−τν(z)/α (3.37)

where I0,ν is the stellar incident intensity at the considered radius R and τν is the
vertical optical depth

τν(z) =

∫ ∞
z

ρd(z)kν(z)dz (3.38)

The incident intensity is then reduced by a factor of e−(τν(z))/α when it passes throght
the annulus. In term of �ux we have

Fν(z) =
Lν

4πR2
e−τν(z)/α (3.39)

where Lν is the stellar luminosity. Once the function Fν(z) is known, one can
compute, from the local energy conservation equation (3.12), the amount of energy
absorbed by the dust grains from the primary stellar radiation

Q(z) =

∫ ∞
0

ρd(z)kν(z)Fν(z)dν (3.40)

3.4.1 Incidente angle of a �ared disk

The fraction of the primary stellar radiation entering in the disk, at each radius,
depend on the value of the incidente angle αirr(R) with respect to the disk's surface;
larger the incidence angle, greater is the amount of stellar radiation energy absorbed
by the dust. Let's compute this incidente angle starting to consider a �at and thin
disk or a disk with a constant H/R. A disk surface element of unit area receives out
of the solid angle dΩ pointing towards the star the �ux Bν(T?)dΩsinθsinφ (�gura
3.4). By the whole upper half of the star, the surface element is illuminated by the
�ux

Fν = Bν(T?)

∫ θmax

0
sin2θdθ

∫ π

0
sinφdφ = Bν(T?)

[
θmax −

1

2
sin2θmax

]
(3.41)

= Bν(T?)

arcsin R?
R
− R?

R

√
1−

(
R?
R

)2
 (3.42)

We express Fν through an e�ective incidente angle, αflatirr , de�ned by

Fν = Bν(T?) · Ω? · αflatirr
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Figure 3.4: Incidente angle of the stellar photons on the disk's surface for a H/R
constant disk (black line) and for a �ared disk (red line). On the �ared disk the
incidente angle αirr of the stellar light is enhanced with respect to the H/R constant
disk by β = αirr − αflatirr

where Ω? is the solid angle of the star. At large distances (x ≡ R?/R << 1) we can

use the approximation [arcsin x− x
√

1− x2 ' 2x3/3] and [Ω? = π
2
R2
?

R2 ]. In this way
the incidente angle is simply given by

αflatirr (R) ≈ 4

3π

R?
R

(3.43)

How we can see, for a �at or H/R constant disk, the incidente angle decresce with
the distance from the star.

In a keplerian disk, when the gas is in hydrostatic equilibrium in the z-direction,
the pressure height Hp increases with the distance R from the star (Eq. 3.3). The
disk is said to be �ared (�gura 3.4). Assuming that the gas and dust are well
mixed, the dust disk is then not �at nor is the ratio Hp/R constant. In this case
the incidente angle of the stellar photons is enhanced with respect to the �at disk:

αirr(R) = αflatirr (R) + β(R)

This enhanced β is derived adopting, as disk's surface, the τ = 1 surface (Hs) (see
Sec. 3.4.2). In this way is possible to write β as

β(R) = arctan
dHs

dR
− arctan

Hs

R
≈ dHs

dR
− Hs

R
= R

d

dR

(
Hs

R

)
(3.44)

In coclusion, the incidente angle of the stellar photons on a �ared disk is

αirr(R) ≈ 4

3π

R?
R

+R
d

dR

(
Hs

R

)
=

4

3π

R?
R

+ (γ(R)− 1)
Hs

R
(3.45)
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where γ(R) is the �aring index de�ned as:

γ(R) =
dlogHs

dlogR
(3.46)

The �aring index is a number of order γ ≈ 2/9. Its value is computed self-
consistently during the iteration procedure. Usually the iteration is started with
a guess for γ and updated after each few iteration steps. In order to avoid numer-
ical instabilities, γ is always evaluated two radial gridpoints away from the point
where it is used (see Appendix of [31] Chiang et al. 2001). It is important to note
that a proper self-consistent computation of the �aring index γ is crucial if one
wants to achieve energy conservation.

3.4.2 Location of the disk surface layer

The disk surface layer enclose the upper part of the disk and is locate above the
surface height zs(R) which is de�ne as the height z above the midplane where the
visual optical depth along the direction of the incident stellar light is egual 1 (so
where the direct stellar radiation is extinced by e−1). The equation to solve to get
zs(R) is then:

τV (R, zs) =
τ⊥V (R, zs)

sin αirr(R)
= 1 (3.47)

where τ⊥V is the vertical component of τV at the visible wavelenghts given by:

τ⊥V (R, z) =

∫ ∞
z

ρd(R, z)kV (R, z)dz

As visible wavelenght we use the peak of the blackbody star. So the surface layer is
the disk region where the largest fraction of stellar radiation is absorbed.

3.5 Solving the RT problem with the VEF method

Once determinato the local amount of energy absorbed by the dust grains from
the primary stellar radiation, we compute the dust temperature distribution. As
discuss in Sec. 2.3.1.2, a straight-forward way to solve them is using the iterative
procedure, know as `Lambda Iteraction', which �rst evaluate Iµ,ν(z) (Eq. 3.11),
then Jν(z) (Eq. 3.49) and �nally Td(z) (Eq. 3.12) and iterate this procedure until
convergene is reached. Instead to use this approach, which converges very slowly
in optically thick regions, we use the moment method `Variable Eddington Factors'
(VEF). This approach is been proved by Dullemond et al. (2002) to be a faster
method to �nd the solution Iνµ(z) of the radiative trasfer equation in circumstellar
disk. Before to introduce the procedure, let's give a general overview of the moment
method and the related closure problem.

The moments of the radiation �eld are de�ned as angular averange of the speci�c
intensity. In 1D geometry the k-th moments of the radiation �eld is given by:

Mk(z) =
1

2

∫ 1

−1
Iµ,ν(z)µkdµ (µ = cosθ) (3.48)
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From this de�nition we can write the �rst three moments as:

Jν(z) =
1

2

∫ 1

−1
Iµ,ν(z)dµ (mean Intensity) (3.49)

Hν(z) =
1

2

∫ 1

−1
Iµ,ν(z)µdµ (Eddington Flux) (3.50)

Kν(z) =
1

2

∫ 1

−1
Iµ,ν(z)µ2dµ (K-integral) (3.51)

Fisically, the moment Jν is simply the mean intensity of radiation, the moment Hν

is related to the radiation �ux by Fν = 4πHν and Kν is related to the radiation

pressure by pν = (4π/c)Kν . The second moment is usually written as a dimen-
sionless factor times the mean intensity, Kν = fνJν , where fν is called Eddington

factor.
The moments obey to the so-called general moments equation, obtained by mul-

tiplying the RT equation (3.6) by µk and integrating over all solid angles dµ

1

2

∫ 1

−1

dIµ,ν(z)

dz
µk+1dµ =ρ(z)kν(z)Bν(Td(z))

1

2

∫ 1

−1
µkdµ

− ρ(z)kν(z)
1

2

∫ 1

−1
Iµ,ν(z)µkdµ

(3.52)

This rappresent an in�nite set of equations (k = 0, ...,∞) and so one need to truncate
the system. In general the moments equation are truncated at the second order:

dHν(z)

dz
= ρ(z)kν(z)(Bν(Td(z))− Jν(z))

d(fν(z)Jν(z))

dz
= −ρ(z)kν(z)Hν(z)

 (3.53)

The system of equation (3.53) is however not closed. We have infact 2 equations
with 3 unknowns Jν ,Hν ,fν and nothing is gained by writing moments equation of
order higher than second. This di�culty is known as the closure problem and one
additional relation among the moments must somehow be obtained to close the
system.

There is no easy way to formulate a closure relation. One of the possible strate-
gies, adopted in a variety of astrophysical scenarios (Mihalas & Mihalas 1984) and
which can circumvent the di�culty of solving the RT equation, is to consider that
the radiation �eld is in di�usion limit approximation. This limit assumes that the
photons meanfree path is much smaller than the scalelenght of the system (optically
thick regime). In other words, in such a di�usion limit, the radiation �eld is supposed
to be isotropic and the close relation is the so-called Eddington approximation:

pν =
1

3
Uν (⇒ fν =

1

3
) (3.54)

where Uν = (4π/c)Jν is the radiation energy density. However, this condition is
violated in the optically thin regime, where the photon mean-free path is su�ciently
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Figure 3.5: Scheme of the iterative VEF procedure to compute the dust temperature
distribution.

larger then the scalelength of the system. In this case the radiation �eld generally
become anisotropic. This can be fatal for problem involving circumstellar disk where
both optically thin and thick regions are present and a RT model must be able to
simultaneosly model both these parts of the disk. A more complex relation must
be therefore applied in way to take into account the dependence of the Eddington
factor from the optical depth τ .

The method we use is based on the variable Eddington factor (VEF) technique.
The RT equation (3.65) and the moment equations (3.53) are solved with an iterative
procedure which recompute iteratively the radiation �eld until the dust temperature
pro�le converge. The variable Eddington factor f(z) is updated at each iteration
step and is used to close the moment equations. More in particular the procedure
follow this sequence of steps:

• The Eddington factor fν(z) is used to close the truncated system of moment
equations (Eq.3.53). Solving this system coupled with the local balance equa-
tion (Eq.3.12) we can determinate the dust temperature pro�le Td(z).

• The resulting temperature provide the source function (Sν(z) = Bν(Td(z)))
which we can use to integrate the formal solution (Eq. 3.11) allow to �nd the
speci�c intensity Iνµ(z).

• From the resulting radiatiation �eld, we then update the Eddington factor
fν(z) and use it in the �rst step.

These steps are iterated until a converged solution for Td(z) is reached, i.e. when
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the relative di�erence in temperature between successive iterations drops below the
convergence criterio

max
0≤i≤nz−1

(
|T oldd (zi)− Tnewd (zi)|
T oldd (zi) + Tnewd (zi)

)
< 10−4 (3.55)

3.5.1 Initial condition

We solve the VEF iterative procedure, departe from an initial con�guration, cor-
risponding to an isotropic radiation �eld. In this way to solve the moment equation
(3.56) we start with the J-mean Eddington factor fJ = 1/3. For the initial dust
temperature Td we take that corrisponding to the primary absorbtion of the stellar
radiation. Finally, we initialize the J-mean opacity kJ to the planck dust opacity.

3.6 Numerical implementation for the RT problem

3.6.1 The Moment equations

The �rst step of our iterative procedure to solve the RT problem is to integrate
the moment equations coupled with the local balance equation. This will provide
the dust temperature Td(z) and therefore the source function Sν(z) (= Bν(Td(z))).
Instead of solving the full frequancy-dependent moment equations (3.53) we solve
its frequency-integrated version:

dH(z)

dz
= ρ(z)

(
kP (Td(z))

σSB
π
Td(z)

4 − kJ(z)J(z)
)

d(fJ(z)J(z))

dz
= −ρ(z)

∫ ∞
0

kν(z)Hν(z)dν

 (3.56)

where σSBT 4
d /π = B(Td) =

∫∞
0 Bν(Td)dν is the frequency-integrated Planck func-

tion, H =
∫∞

0 Hνdν, J =
∫∞

0 Jνdν are the frequency-integrated mean intensity and
�ux, respectively, and the quantities:

kP (Td) =

∫∞
0 Bν(Td)kνdν

B(Td)
kJ =

∫∞
0 kνJνdν

J
fJ =

∫∞
0 fνJνdν

J

are respectively the Planck mean opacity, J-mean opacity and J-mean Eddington
factor. These last two quantity are computed from the solution of the radiative
transfer. As point out in [39] Dullemond et al. 2002 the second equation in 3.56
is integrated without use the the �ux-mean opacity (or Rosseland opacity) kH =∫∞

0 kνHνdν/H (see Appendix A in Dullemond et al. 2002).
The right-hand-side of the �rst equation can be moreover replace by the source

term Q(z)/4π by using the frequency-integrated version of the local energy conser-
vation equation (3.12) which can be written

ρ(z)kP (Td(z))
σSB
π
Td(z)

4 = ρ(z)kJ(z)J(z) +
Q(z)

4π
(3.57)



42

Chapter 3. 1+1D Disk Structure Model with spatial variation of dust

property

Figure 3.6: Scheme of integration paths in a 2D medium for the long characteristic
method (left) and the short characteristic method (right). In both cases the rays are
directed towards the bottom right. Note that the intensity values at the starting
points must be determined by interpolation. When long characteristics are used
many interpolations along the path are required in addition

The advantage of the moment equation (3.56) is that they can be integrated directly,
using a two-point boundary value method. The �rst equation can be integrated from
the midplane up to zmax using, at z = 0 the BC

H(0) = 0 (3.58)

The second equation is integrated back from zmax towards the midplane using, at
z = zmax, the BC

J(zmax) = H(zmax)/ψ (3.59)

where H(zmax) is that obtained from the �rst equation and the ratio ψ is com-
puted from the solution of the radiative transfer. Both the di�erential equations are
straight numerically solved using the forward Euler method.

Once the frequency-integrated mean intensity J(z) is obtained, the dust temper-
ature can be determined from the frequency-integrated energy conservation equation
(Eq. 3.57). This allow us to obtained the source function which will be used to in-
tegrate the formal solution (Eq. 3.11).

3.6.2 Formal solution of the RT equation

Once the source function is know, we procede our iterative procedure solving at
each hight z, direction µ and frequency ν, the formal solution (Eq. 3.11). This
will provide the variable Eddington factor needed to close the truncated system
of moment equations (3.56). Here we illustrate the method we are going to use
in a more generale case of a 2D Cartesian grid (the application at 1D is then
straighforward).
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Essentially, the VEF method reduces the general RT problem into a set of formal
solution. This means that the speed with which we solve a general RT problem is
largely determined by the speed of the formal solution. Therefore, we have to seek as
e�cient numerical schemes for performing a formal solution as possible. The most
straightforward way to do this is by the method of `Long Characteristics' (LC)
where the integral equation is solved, at each spatial grid-point, along the entire ray
coming from the external boundary (�gure 3.6). The values of the quantities along
the ray are obtained by interpolation. This method is accurate but computationally
time-consuming as typically requires in the order of N integration steps. This means
that if we have a spatial grid N2

x̄ , angle grid N2
Ω and a set of Nν frequencies, the

total computational time (at each iteration) scales as

NCPU ∝ N3
x̄ ×N2

Ω ×Nν (3.60)

A more e�cient algorithm to compute the formal solution is by the method of
`Short Characteristics' (SC) ([86] Mihalas et al. 1978, [72] Kunasz & Auer 1988,
[12] Auer & Paletou 1994) where instead of performing the integral, at each spatial
grid-point, along the entire ray (the long characteristic), one perform the integral
only along a portion of the ray (the short characteristic). If the point P is the grid
point at which one wishes to calculate the speci�c intensity, for a given frequency ν
and direction Ω, and the point M is the intersection point with the grid-plane that
one �nds when moving in the `upwind' direction along −Ω (�gure 3.6), the formal
solution to solve at the point P is

IP = IMe
−∆τM +

∫ ∆τM

0
S(τ ′)e−(∆τM−τ ′)dτ ′ (3.61)

where ∆τM is the optical depth di�erence between points P and M and we have
dropped the frequency and angle dependencies for clarity. In order to evaluate the
intensity with this equation, we need to solve the integral of the source functions
along the short characteristic MP . Following Kunasz & Auer 1988 this integral can
be solved, with second order accuracy, by interpoling the source function between
the points M,P and N. In this way the formal solution become:

IP = IMe
−∆τM + αSM + βSP + γSN (3.62)

where the coe�cient α,β and γ are given by

α = x+
z − y(∆τN + 2∆τM )

∆τM (∆τM + ∆τN )
x = 1− e−∆τM

β =
y(∆τM + ∆τN )− z

∆τM∆τN
y = ∆τM − x

γ =
z − y∆τM

∆τN (∆τM + ∆τN )
z = (∆τM )2 − 2y

where ∆τN are the optical depth di�erence between points P andN . In the previews
relation the intensity IM and the optical depth and source functions at the points
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M and N are assumed to be known. In general, however, the M-point (like the
point P) will not be a grid-point of the chosen 2D statial grid. These quantities
have to be therefore calculated by interpoling from the available information at the
surrounding grid-points.

The method of Short Characteristic is computationally less time consuming then
the method of Long Characteristic, because now the transfer integral is performed
over a much shorter path. For the same discretization introduced earlier in this
section, the computational time scale as

NCPU ∝ N2
x̄ ×N2

Ω ×Nν (3.63)

which is typically an factor N shorter than in the case of Long Chracteristics.

1D Case. In our plane-parallele geometry we solve the formal solution with
the SC method discussed above using the two stream approach. In this case we do
not have the problem of additional interpolation (the points M and N in �gure
3.6 are now grid-point of our spatial grid). The two stream approach consider the
radiation �eld consisting in two streams, to up-streams I+

ν (= Iν(+µ)) that cross the
layers from the midplane to the top at angle +µ and down-streams I−ν (= Iν(−µ))
that cross the layers in the opposite direction at angle −µ (the variable µ is restrict
to a positive quantity 0 ≤ µ ≤ 1). With this approach we have to solve, for the two
opposite directed pencils ±µ, the equations

µ
dI+
ν (z)

dz
= ρd(z)kν(z)

(
Bν(Td(z))− I+

ν (z)
)

(3.64)

µ
dI−ν (z)

dz
= ρd(z)kν(z)

(
Bν(Td(z))− I−ν (z)

)
(3.65)

We can perform the formal solution (3.62) by using the two-point boundary value
method speci�ng two BC at the upper and lower grid-point. For the down-streams
radiation I−ν , the formal solution is computed using, at z = zmax, the BC

I(−µ, ν, zmax) = 0 (3.66)

So we are assuming no incaming radiation (the stellar radiation �eld is treated as
separate problem as showed in Sec. 3.4). For the up-streams radiation I+

ν , the
formal solution is computed using, at z = 0, the BC

I(+µ, ν, 0) = I(−µ, ν, 0) (3.67)

This is due to the symmetry condition of the radiation �eld respect to the midplane
z = 0. Once the up-streams and down-streams intensity are obtained, two averange
quantity are computed

uµ,ν(z) =
1

2

(
I+
ν (z) + I−ν (z)

)
(symmetric average) (3.68)

vµ,ν(z) =
1

2

(
I+
ν (z)− I−ν (z)

)
(antisymmetric average) (3.69)
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which have, respectively, a mean-intensity-like and �ux-like character. From these
two quantities we can then compute:

Jν(z) =

∫
uµ,ν(z)dµ Hν(z) =

∫
vµ,ν(z)µdµ fν(z) =

∫
uµ,ν(z)µ2dµ

Jν(z)

and the respective frequency-integrated value J ,H, J-mean Eddington factor fJ ,
J-mean opacity kJ and the ratio ψ = J/H(zmax) which are needed to solve the
truncated system of frequency-integrated moment equations (Eq.3.56).

3.6.3 Convergence and Acceleration methods

Each successive iteration of our procedure, brings the solution closer to the true
solution. A quicker convergence can be reach by applying a linear convergence
ampli�er. One common approach is to use the Ng acceleration method ([90] Ng
1974, [10, 11] Auer 1987, 1991). In this method one uses the results in previous
iterates step to estimate the convergence behavior of the problem. After every
fourth iteration steps an extrapolation can then be performed towards the expected
convergence. The number of iteration is not a strict requirement but four is typically
found to give a reliable and signi�cant acceleration.
The e�ect of the acceleration is show, for example, in �gure 3.12 where is shown
the convergence history of the relative di�erence in temperature between successive
iteration using the VEF method with Ng accelerator and without.

3.7 Dust-to-Gas ratio and Maximum grain size distribu-

tion

Numerical simulations of cougulation/sedimentation dust models in circumstellar
disks predict that grains grow, migrate and frament in the disk and predict varia-
tion of dust properties as a function of position, disk age and physical properties.
Detailed models of dust grain growth and settling and the resulting vertical disk
structure can be found in [42] Dullemond & Dominik 2004. An analysis of the
radial drift of the dust grains can be found in [26] Brauer et al. (2008) and [20]
Birnstiel et al. (2010). In our model we do not include the detailed picture of the
dust growth and sedimentation but we try to reproduce them incorporating in para-
metric way the possibility to have spatial variation of the maximum grain size and
dust-to-gas ratio distribution.

We adopt for both these two distributions a pro�le characterised by a power law
distribution in radial direction and a gaussian distribution in vertical direction:

η(R, z) = η0

(
R

R
(η)
0

)dR
exp

(
−dz ∗

z2

H2
p

)
(3.70)

amax(R, z) = a0

(
R

R
(a)
0

)bR
exp

(
−bz ∗

z2

H2
p

)
(3.71)
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where η0 (a0) is the dust-to-gas ratio (maximum grain size) value at the reference
position (R0, z0) ((Rin, 0) for η and (40, 0)AU for amax), dR (bR) is the index of
the radial power law pro�le and dz (bz) is the index of vertical gaussian pro�le.
We relate this two quantities to the disk structure expressing the vertical gaussian
pro�le of both distributions in function of the characteristic pressure height Hp(R).
In this way, at the height Hp, the dust-to-gas ratio decrease of a factor edz (ebz for
the maximum grain size) respect at the midplane. As the disk is not isothermal
in vertical direction we can not use the classical expression (Eq. 3.3) valid for an
vertically isothermal disk. As show the Eq. 3.2, Hp represents the height at which
the pressure decrease of a factor e1/2. We de�ne therefore Hp in this way comput-
ing the vertical gas pressure pro�le (Eq. 3.31) using the temperature and density
distributions compute, respectively, in step 2 and 3 of our iteration procedure.

The maximum grain size amax(R, z) and the dust-to-gas ratio η(R, z) distri-
butions contribuite to specify the dust opacity distribution (κν = ρdkν) and they
therefore regulate the radiative transport in the disk and so in�uence its thermal
structure. Using di�erent Rz-distribution for amax and η we will see (Sec. 3.12)
that the model predict change in the disk structure and dust continuum emission.

3.8 Observable: SED and Emission Map

After our iterative procedure compute the thermal and geometrical disk structure
of the disk in vertical hydrostatic equilibrium, intensity pro�le and Spectral Energy
Distribution (SED) can be produced. This is done by using the ray-tracing procedure
which compute the emerging intensity by integrating the formal solution of the RT
equation (Eq. 3.11) along rays originating from the observer. As we have done in
Sec.3.6.2 to solve the thermal structure, we use here the same numerical algorithm
(see. Sec. 3.6.2). Once obtained the intensity pro�le Iν(R) at each wavelenght, we
can then compute the resulting �ux.
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Fiducial Annulus Model
STAR L? = 0.3L� ANNULUS R = [10− 10.1]AU

M? = 0.5M� DOMAIN z = [0− 8Hp]

T? = 3000◦K GAS SURFACE Σg = 100g/cm2

GAS µ = 2.3 DENSITY
COMPOSITION (H2,He mixture) DUST-TO-GAS η0 = 0.01

DUST 7% silicates RATIO dR = 0.0, dz = 0.0

COMPOSITION 21% carbonaceous MAXIMUM a0 = 10µm

42% water ice GRAIN SIZE bR = 0.0, bz = 0.0

30% vacuum

Table 3.1: Parameters of the �ducial annulus model.

Figure 3.7: The dust opacity kν(z) distributions at few wavelenghts (left panel) and the
gas-dust density distributions ρg(z), ρd(z) (right panel) of the �ducial annulus model.

3.9 Annulus structure and emission

To illustrate the basic results of the annulus structure calculation, we construct
a �ducial annulus model (table 3.1) for a typical T Tauri star. We consider an
annulus at 10AU from the central star with width 0.1AU (i.e an annulus between 10

and 10.1 AU) and extended in vertical direction from the midplane z = 0 to zmax =

8Hp (where Hp is the pressure height of the initial gaussian density distribution).
This model corrisponds to a annulus with gas mass Mgas

annulus = 7.1× 10−5M� and
so dust mass Mdust

annulus = 7.1 × 10−7M�. For this annulus test we assume, for
simplicity, that the incident angle is �xed to α = 0.05. Our computations adopt a
uniform grid of 100 points in vertical direction, a logarithmic grid in wavelenght of
100 points covering a domain 0.1µm ≤ λ ≤ 1cm and a logarithmic grid in µ of 100

points covering a domain 0.01 ≤ µ ≤ 1. To show how the �nal result (i.e. when the
convergence criterio is reached) change respect to the results corrisponding to the
initial guess (IG) con�guration, we plot both the initial (dot line) and �nal (solid
line) pro�le. The red points overplotted correspond to the characteristic heights of
the disk: the gas pressure height Hp and the surface height zs. The dust deplection
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Figure 3.8: The source term from stellar irradiation of the �ducial annulus model.

height zdepl is setted by the amax(z) distribution which in this case correspond to
zmax because of the constant (10µm) amax(z) distribution.

In Fig. 3.7 (left pannel) we show the resulting dust opacity kν(z) at few wave-
lenghts. Because of the constant dust properties along the annulus, the opacity has
therefore a vertically constant pro�le with lower values at long wavelengths (black
line) than at shorter wavelenghts (green line). This can be also see in Fig. 3.8
(left-bottom pannel) where is shown the opacity in function of the wavelenght.

In Fig. 3.7 (right pannel) we show the resulting gas density pro�le ρg(z) (black
line). The initial gaussian pro�le (dot line) turn, when the vertical HS equilibrium
is reached, in a pro�le which is stepper then the gaussian in the inner layer and
shallower in the surface layer. This is given to the presence, now, of a temperature
gradient in vertical direction and can be easly understood looking the Eq. 3.32 and
the resulting temperature (Fig. 3.10). Just above the gas pressure height, where
the temperature increase very fast, the gas density gradient increase; while in the
upper layer, where the temperature stabilize at a certain value, the density gradient
become smaller. For this reason, moreover, the resulting gas pressure height is
slightly di�erent of that of an initial vertically isothermal disk. At each height z,
the dust density (red line) has a value 100 time less then the gas density one because
of the constant (0.01) dust-to-gas ratio distribution.

In Fig. 3.8 (right pannel) we show the resulting energy absorbed by the dust
grains from the primary stellar radiation Q(z). Starting from upper point zmax
the pro�le is characterized by an initial increase and then by an quick decrease.
This can be easly understood looking at the resulting stellar radiation �ux (Fig.
3.8 left-top pannel) and dust density (Fig. 3.7 right pannel) pro�les (see the Eq.
3.40). In the upper layer, where the �ux does not change due the optically thin
regime environment, the energy absorbed by the dust increase because of the increase
in dust density. When the stellar radiation cross over the surface height zs, the
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Figure 3.9: Characteristic quantities of
the radiation �eld. Top panel : the
frequency-integrated mean intensity J(z).
Central panel : the frequency-integrated
Eddington �ux H(z). Bottom panel :
the frequency-averaged Eddington factor
f(z).

Figure 3.10: The gas-dust tempera-
ture distribution T (z) of the �ducial
annulus model.

Figure 3.11: The SED of the �ducial
annulus model.

exponentially decrease of the �ux cause a fall o� of the energy absorbed by the
dust and only a very small ammount of energy (from the longest wavelengths) is
absorbed by the midplane dust.

In Fig. 3.9 we show same characteristic quantities of the radiation �eld in the
disk. Firstly, one can see (bottom pannel) how the Eddington factor f(z) drop below
1/3 in the upper layers of the disk. This because here we are in optically thin regime
and we are not in the di�usion limit approximation anymore and the radiation �eld
become anisotropic.

In Fig. 3.10 we show the resulting temperature distribution T (z). As we can
see the temperature pro�le shift downward. This can be understood looking at
the resulting Q(z) (Fig. 3.8 right pannel) and mean intensity J(z) pro�les (see
Eq. 3.57). At lower heights, the stellar energy absorbed by the dust and the mean
intensity of the reprocessed radiation is bigger at the �nal con�guration, we have
an higher temperature at the �nal con�guration.

In Fig. 3.11 we show the resulting SED. As we can see, the infrared �ux from
the annulus in vertical HS equilibrium increase respect to that corrisponding to the
initial con�guration. The reason for this is that the IR emission forms in the upper
layers of the disk where the �nal dust density value result bigger then the initial
gaussian pro�le (see Fig. 3.7 right pannel).
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Figure 3.12: Left panel : Energy conservation test. Central panel : Convergence
history for the relative di�erence in temperature between successive iteration using
the VEF method with Ng acceleration and without acceleration. Right panel :
Convergence history for the relative di�erence in gas density between successive
iteration to reach the vertical HS equilibrium.

3.9.1 Testing and convergence

In order to verify the reliability of our annulus structure calculation, a few tests are
performed. First of all we check if we have achive the energy conservation i.e the
annulus emitt more or less radiation that they receive (entering �ux Fin w exit �ux
Fout). As show the Fig. 3.12 (left panel) the di�erence relative between Fin and
Fout, at each iteration, remain less then 1%.

Fig. 3.12 (central panel) shows the convergence history for the relative di�erence
in temperature between successive iteration using the VEF method with Ng acceler-
ator and without accelerator. How we can see using extrapolate temperature every
4 step reduce considerably the number of iteration. As proved by [39] Dullemond et
al. (2002) the VEF method is much faster then method like Lambda Iteration (LI)
and Accelerator Lambda Iteration (ALI) (see Appendix A2 in Dullemond et al.).

Finally, Fig. 3.12 (right panel) shows the convergence history for the relative
di�erence in gas density between successive iteration to reach the vertical HS equi-
librium. How we can see our convergence criterio is reached (red points) after six
iteration. We also plot the average di�erence (black points) which obviously decrease
rapidly.

3.10 E�ects of di�erent η(z) and amax(z) distributions on

the annulus structure

Here we show how di�erent η(z) and amax(z) distributions, a�ect the structure and
emission properties of the annulus. In order to do this we consider two grids of
models, each one construct varing, respect to the �ducial model (table 3.1), the
values of few parameters corrisponding to the e�ect that we want to investigate. In
particular we will analyze the e�ect of the dust-to-gas ratio distribution (grid model
A), maximum grain size distribution (grid model B). For each model we compute
the self-consistent annulus structure in vertical hydristatic equilibrium (as described
in Sec. 3.2) and the Spectral Energy Distribution (as described in Sec. 3.8).
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Grid model A
η0 0.01 0.0125 0.015
dz 0.0 0.186 0.394

Table 3.2: Parameters of the model
grids for the dust-to-gas ratio distribution
(Eq.3.70): dz is the index of vertical Gaus-
sian pro�le and η0 is the dust to gas ratio
value at the reference position z0 = 0. The
�ducial model values are highlighted in
bold face. Figure 3.13: The dust-to-gas ratio

η(z) of the grid model A.

Figure 3.14: The dust opacity kν(z) distributions at few wavelenghts (left panel) and
the gas-dust density distributions ρg(z), ρd(z) (right panel) of the grid model A.

3.10.1 E�ects of spazial variation of the η(z) distribution

In order to see the e�ect of the dust-to-gas ratio distribution η(z), we construct a
grid of 3 models (table 3.2) varing the parameters η0 and dz (dR is �xed to zero) of
our gaussian parametrization (Eq. 3.70). The model A0 corrispond to the �ducial
annulus model (Sec. 3.9) with constant η(z) distribution and the model A1,A2

corrispond to annuli with increse z-variation (Fig. 3.13). As consequence of this
increase of the index dz, the annuli have di�erent dust density pro�les (Fig. 3.14
right pannel red lines). However the parameters η0 and dz have been chosen in a
way to have 3 annuli with the same dust surface density (Σd = 1.0g/cm2) and so
the same dust mass (Md = 7.1× 10−7M�). In this grid models the variation of the
vertical optically depth distributions and so of the �ux Fν(z) of the stellar radiation
that penetrate through the annulus, are essentially due to the variation of the dust
density distribution.

In Fig. 3.15 (top pannel) we show the resulting dust absorbed energy Q(z) from
the primary stellar radiation. How we can see the grains in the upper layers absorb,
at a given z, more energy in model 0 then in model 2. This because in these layers
the dust density has heigher values in model 0 then in model 2 (see Fig. 3.14 right
pannel). For this reason, moreover, the surface height zs (τ = 1) move downward
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Figure 3.15: The source term from stel-
lar irradiation Q(z) (top panel) and
the characteristic quantities of the ra-
diation �eld (as in Fig. 3.9) (bottom
panels) of the grid model A.

Figure 3.16: The gas-dust temperature
distribution T (z) (top panel) and SED
(bottom panel) of the grid model A.

from model 0 to model 2: the stellar photons can deppler penetrate the annulus
in model 2 and so the largest fraction of stellar radiation is absorbed closer to the
midplane.

In Fig. 3.15 (bottom pannel) we show same characteristic quantities of the
radiation �eld in the disk.

In Fig. 3.16 (top pannel) we show the resulting temperature distribution T (z).
As we can see the temperature pro�le shift downward from model 0 to model 2.
This because the surface height zs move downward. At lower heights, as the stellar
energy absorbed by the dust and the mean intensity of the reprocessed radiation
increase from model 0 to model 2, we have an higher temperature in model 2 then
in model 0. Near the midplane, however, the temperature is ...

In Fig. 3.16 (bottom pannel) we show the resulting SED.
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Grid model B
a0[mm] 0.01 0.2 3.0
bz 0.0 0.18 0.5

Table 3.3: Parameters of the models grid
for the maximum grain size distribution
(Eq.3.71): bz is the index of vertical Gaus-
sian pro�le and a0 is the maximum grain
size value at the reference position z0 =

0. The �ducial model values are high-
lighted in bold face. Figure 3.17: The maximum grain size dis-

tribution amax(z) of the grid model B.

Figure 3.18: The dust opacity kν(z) distributions at few wavelenghts (left panel) and
the gas-dust density distributions ρg(z), ρd(z) (right panel) of the grid model B.

3.10.2 E�ects of spazial variation of the amax(z) distribution

In order to see the e�ect of the maximum grain size distribution amax(z), we con-
struct a grid of 3 models (table 3.3) varing the parameters a0 and bz (bR is �xed to
zero) of our gaussian parametrization (Eq. 3.71). The model B0 corrispond to the
�ducial annulus model (Sec. 3.9) with constant amax(z) distribution and the model
B1,B2 corrispond to annuli with increase z-variation (Fig. 3.17). As consequence of
this increase of the index bz, the deplection height zdepl become lower as the maxi-
mum grain size reach the minimum size at lower height. In this way, moreover, the
dust surface density Σd decrease from model B0 to model B2 (as the dust-to-gas
ratio pro�le is �xed). However this decrease of dust mass is very low as we are just
cutting the tail of the ∼ gaussian dust density distribution in the upper layer. So,
as in the grid model A, we are compare 3 annuli with the same dust surface density
(Σd = 1.0g/cm2) and so the same dust mass (Md = 7.1× 10−7M�).

In Fig. 3.18 (left pannel) we show the resulting dust opacity kν(z) at few wave-
lenghts. How we can see, the variation of the amax pro�le lead to di�erent dust
opacity pro�le. The dust opacity has, at each wavelenght, a peak in its distribution.
The width of the peak and his position in the annulus depend from the z-variation
of the maximum grain size and can be clearly understood looking at the plot kν(z)
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Figure 3.19: The source term from stel-
lar irradiation Q(z) (top panel) and
the characteristic quantities of the ra-
diation �eld (as in Fig. 3.9) (bottom
panels) of the grid model B.

Figure 3.20: The gas-dust temperature
distribution T (z) (top panel) and SED
(bottom panels) of the grid model B.

as function of amax (Fig. 2.2). For wavelenght of 3mm, for example, the regions
of the annulus that have a value of amax between 0.01 cm and 0.1 cm, will present
the peak in the kν(z) distribution. In particular, the position of the opacity peak
move to lower heights as the index bz increase from model B0 to model B2. This
beacuse the amax range, responsible for the opacity peak, move at lower z. In this
grid models the variation of the vertical optically depth pro�le and so of the �ux
Fν(z) of the stellar radiation that penetrate through the annulus, are essentially due
to the variation of the dust opacity distribution.

In Fig. 3.19 we show the resulting dust absorbed energy Q(z) from the primary
stellar radiation.
In Fig. 3.19 we show same characteristic quantities of the radiation �eld in the disk.
In Fig. 3.20 we show the resulting temperature distribution T (z).
In Fig. 3.20 we show the resulting SED.
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Fiducial Disk Model
STAR L? = 0.3L� DISK DOMAIN R = [0.1− 150]AU

M? = 0.5M� z = [0− 8Hp]

T? = 3000◦K GAS SURFACE Σ0 = 25g/cm2

GAS µ = 2.3 DENSITY p = 1.0

COMPOSITION (H2,He mixture) DUST-TO-GAS η0 = 0.01

DUST 7% silicates RATIO dR = 0.0 , dz = 0.0

COMPOSITION 21% carbonaceous MAXIMUM a0 = 10µm

42% water ice GRAIN SIZE bR = 0.0 , bz = 0.0

30% vacuum

Table 3.4: Parameters of the �ducial disk model.

Figure 3.21: The dust opacity kν(R, z) distributions at few wavelenghts (top panel)
and the gas density distribution ρg(R, z) (bottom panels) of the �ducial disk model.

3.11 Disk structure and emission

To illustrate the basic results of the disk structure calculation, we construct a �du-
cial disk model (table 3.4) for a typical T Tauri star. We consider a disk with
an inner hole extended in radial direction from 0.1AU to 150AU from the central
star and in vertical direction from the midplane z = 0 to zmax = 8Hp(R) (where
Hp is the pressure height of the initial gaussian density distribution). We assume
here a surface density following a power low distribution Σg(R) = Σg (R/R0)p.
This model corrisponds to a disk with gas mass Mgas

disk w 0.1M� and so dust mass
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Figure 3.22: The characteristic disk
heights pro�les of the �ducial disk
model. Top panel : the pressure
height scale Hp(R). Middle panel :
the disk surface height zs(R). Bottom
panel : the deplection height zdepl(R).

Figure 3.23: The �aring index
γ(R) (top panel) and incidente angle
αirr(R) pro�les (bottom panel) of the
�ducial disk model.

Mdust
disk w 10−3M�. Our computations adopt the same grids used in the annulus test

(Sec. 3.9) with a logarithmic grid of 100 points in radial direction. To show how
the �nal result (i.e. when the convergence criterio is reached) change respect to the
results corrisponding to the initial con�guration, we plot both the initial guess (IG)
(solid line) and �nal (F) (dot line) pro�le. The red points overplotted correspond
to the characteristic heights of the disk: the gas pressue height Hp and the surface
height zs. The dust deplection height zdepl is setted by the amax(R, z) distribution
which in this case correspond to zmax because of the constant (10µm) amax(R, z)

distribution.
In Fig. 3.21 (top pannels) we show the resulting dust opacity kν(R, z) at few

wavelenghts. Because of the constant dust properties throghtout the disk, the opac-
ity has therefore a spatially constant pro�le with lower value at long wavelenghts
(left pannel) then at shorter wavelenght (right pannel) (see also Fig. 3.8 left-bottom
pannel where is shown the opacity in function of the wavelenght).

In Fig. 3.21 (bottom pannels) we show the resulting gas density distribution
ρg(R, z). Clearly the gas density distribution decrease in radial direction as we have
choosen a gas surface density with p > 0. As we have already discuss in the annulus
test (Sec. 3.9), the resulting vertical gas density gradient change with respect to
that of the initial isotermal con�guration as a consequence of the presence, now,
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Figure 3.24: The source term from stellar irradiation Q(R, z) of the �ducial model.
Left panel : the �nal distribution in the (R,z) plane. Right panels: some R and iz
sections.

Figure 3.25: Some characteristic quantities of the radiation �eld as derive solving the
RT problem with VEF method of the �ducial disk model. Left panel : the frequency-
integrated mean intensity J(z). Central panel : the frequency-integrated Eddington
�ux H(z). Right panel : the frequency-averaged Eddington factor f(z).

of a vertical temperature gradient (Fig. 3.26). At each position (R, z) the dust
density has a value 100 time less then the gas density one because of the constant
(0.01) dust-to-gas ratio distribution.

In Fig. 3.22 we show the resulting characteristic heights pro�les H(R).
In Fig. 3.23 we show the resulting �aring index pro�le γ(R).

In Fig. 3.24 we show the resulting energy absorbed by the dust grains from
primary stellar radiation Q(R, z). As we have already discuss in the annuls test
(Sec. 3.9) the vertical pro�le of Q is characterized by a peak in correspondence to
the surface height zs.

In Fig. 3.25 we show same characteristic quantities of the radiation �eld in the
disk. As we have already discuss in the annuls test (Sec. 3.9), the Eddington factor
f(z) drop below 1/3 in the upper layers of the disk.
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Figure 3.26: The gas-dust temperature distribution T (R, z) of the �ducial model.
Left panel : the �nal distribution in the (R,z) plane. Right panels: some R and iz
sections.

Figure 3.27: The SED (left panel) and intensity pro�le ar few wavelenghts (right
panel) of the �ducial disk model.

In �gure 3.26 we show the resulting temperature distribution T (R, z).

In �gure 3.27 we show the resulting intensity pro�le and SED.
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Figure 3.28: Left panel : Energy conservation test. Central panel : Convergence
history for the relative di�erence in temperature between successive iteration, for
each annulus, using the VEF method with Ng acceleration. Right panel : Conver-
gence history for the relative di�erence in gas density between successive iteration
to reach the vertical HS equilibrium.

3.11.1 Testing and convergence

As the annulus test, in order to verify the reliability of our disk structure calculation,
we performe few tests. First of all we check if we have achive the energy conservation
i.e the annulus emitt more or less radiation that they receive (entering �ux Fin w
exit �ux Fout). As show the Fig. 3.28 (left panel) the di�erence relative between
Fin and Fout, at each iteration, remain around 1%.

Fig. 3.28 (central panel) show the convergence history for the relative di�er-
ence in temperature between successive iteration, for each annulus, using the VEF
method (with Ng accelerator). How we can see on average the number of iteration
is around 10.

Finally, the Fig. 3.28 (right panel) show the convergence history for the rela-
tive di�erence in gas density between successive iteration to reach the vertical HS
equilibrium. How we can see our convergence criterio is reached (red point) after 10

iteration.

3.12 E�ects of di�erent η(R, z) and amax(R, z) distribu-

tions on the disk structure

Here we show how the di�erent η(R, z) and amax(R, z) distributions, a�ect the
structure and emission properties of the disk. In order to do this we consider, as
in the annulus test, two grids of models, each one construct varing, respect to the
�ducial model (table 3.4), the values of few parameters corrisponding to the e�ect
that we want to investigate. In particular we will analyze the e�ect of the dust-to-gas
ratio distribution (grid model A), maximum grain size distribution (grid model B).
For each model we compute a self-consistent disk structure in vertical hydristatic
equilibrium (as described in Sec. 3.2) and the Spectral Energy Distribution (as
described in Sec. 3.8).
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Grid model A
η0 0.01 0.0112 0.053

dR 0.0 0.0 0.25

dz 0.0 0.1 0.1

Table 3.5: Parameters of the models
grid for the dust-to-gas ratio distribution
(Eq.3.70): dR is the index of radial PL
pro�le, dz is the index of vertical Gaussian
pro�le and η0 is the dust-to-gas ratio value
at the reference position (0.1, 0)AU . The
�ducial model values are highlighted in
bold face.

Figure 3.29: The �nal dust-to-gas ra-
tio distribution in the (R, z) plane
(top panels) and some R sections (bot-
tom panel) of the grid model A.

3.12.1 E�ects of spazial variation of the η(R, z) distribution

In order to see the e�ect of the dust-to-gas ratio distribution η(R, z), we construct a
grid of 3 models (table 3.5) varing the parameters η0,dR and dz of our parametriza-
tion (Eq. 3.70). The model A0 corrispond to the �ducial disk model (Sec. 3.11) with
constant η(R, z) distribution, the model A1 corrispond to a disks with z-variation
and R-constant distribution and the model A2 corrispond to a disks with same z-
distribution of A1 but with also R-variation (Fig. 3.29). As consequence of this
di�erent parameters value, the disks have di�erent dust density pro�les (Fig. 3.30
bottom pannel). However the parameters η0,dR and dz have been chosen in a way
to have 3 disks with the same dust mass Md = 0.00106M�. In this grid models the
variation of the optically depth distribution and so of the �ux Fν(R, z) of the stellar
radiation that penetrate through the disk, are essentially due to the variation of the
dust density distribution.
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Figure 3.30: Some R and iz sections of the dust opacity distributions at few wave-
lenghts (top panels) and the gas-dust density distributions (bottom panels).

In �gure 3.31 we show the resulting characteristic heights pro�les H(R).

In �gure 3.32 we show the resulting �aring index pro�le γ(R).
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Figure 3.31: The characteristic disk
heights pro�les of the grid model A.
Top panel : the pressure height scale
Hp(R). Middle panel : the disk sur-
face height zs(R). Bottom panel : the
deplection height zdepl(R).

Figure 3.32: The �aring index
γ(R) (top panel) and incidente angle
αirr(R) pro�les (bottom panel) of the
grid model A.

Figure 3.33: Some R sections of the
source term from stellar irradiation
Q(R, z) of the grid model A.

In Fig. 3.33 we show the resulting dust absorbed energy Q(R, z) from the pri-
mary stellar radiation. As we have already discuss in the annulus test (Sec. 3.10.1),
the grains in the upper layers absorb, at a given z, more energy in model 0 then
in model 1 because the heigher dust density in these layers (see Fig. 3.30 bottom

pannel). For this reason, moreover, the surface height zs (τ = 1) move downward
from model 0 to model 1: the stellar photons can deppler penetrate the annulus
in model 1 and so the largest fraction of stellar radiation is absorbed closer to the
midplane.
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Figure 3.34: Some R sections of the characteristic quantities (as Fig. 3.25) of the
radiation �eld of the grid model A.

Figure 3.35: Some R and iz sections of the gas-dust temperature distribution of the
grid model A.

Figure 3.36: The SED and the intensity pro�le at few wavelenghts of the grid model A.

In Fig. 3.34 we show same characteristic quantities of the radiation �eld in the
disk.

In Fig. 3.35 we show the resulting temperature distribution T (R, z).
As we can see the temperature pro�le shift downward from model 0 to model 1.
This because the surface height zs move downward. At lower heights, as the stellar
energy absorbed by the dust and the mean intensity of the reprocessed radiation
increase from model 0 to model 1, we have an higher temperature in model 1 then
in model 0. Near the midplane, however, the temperature is ...

In Fig. 3.36 we show the resulting intensity pro�le and SED.
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Grid model B
a0[mm] 0.01 0.2 3.0

bR 0.0 0.2 0.5

bz 0.0 0.23 0.23

Table 3.6: Parameters of the models grid
for the maximum grain size distribution
(Eq.3.71): bR is the index of radial PL
pro�le, bz is the index of vertical Gaussian
pro�le and a0 is the maximum grain size
value at the reference position (40, 0)AU .
The �ducial model values are high-
lighted in bold face.

Figure 3.37: The �nal maximum grain
size distribution in the (R, z) plane
(top panels) and some R sections (bot-
tom panel) of the grid model B.

3.12.2 E�ects of spazial variation of the amax(R, z) distribution

In order to see the e�ect of the maximum grain size distribution amax(R, z), we
construct a grid of 3 models (table 3.6) varing the parameters a0,bR and bz of our
parametrization (Eq. 3.71). The model B0 corrispond to the �ducial disk model
(Sec. 3.11) with constant amax(R, z) distribution, the model B1 corrispond to a
disks with z-variation and R-constant distribution and the model B2 corrispond to
a disks with same z distribution of B1 but with also R-variation (Fig. 3.37). As
consequence of the di�erent parameter values, the deplection height pro�le zdepl(R)

change (see Fig. 3.37 bottom pannel). In this way, moreover, the mass of the disk
decrease from model B0 to model B1 (as the dust-to-gas ratio distribution is �xed).
However this decrease of mass is very low as we are just cutting the tail of the ∼
gaussian dust density distribution in the upper layer. So, as in the grid model A,
we are compare 3 disks with the same dust mass (Md = 0.00106M�).
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Figure 3.38: Some R and iz sections of the dust opacity distributions at few wave-
lenghts (top panels) and the gas-dust density distributions (bottom panels).

In Fig. 3.38 (top pannel) we show the resulting dust opacity kν(R, z) at few
wavelenghts. As we have already discuss in the annulus test (Sec. 3.10.2), di�erent
amax distribution lead to di�erent dust opacity distribution which present a peak in
correspondence to a certain .....

In Fig. 3.38 (bottom pannel) we show for some models the resulting gas density
distribution ρg(R, z). How we can see the Rz-pro�le are almost the same for all
the models. This is given by the fact that all the models have the same Σ(R)

distribution and at each radius the gas reach the hydrostatic equilibrium ..........
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Figure 3.39: The characteristic disk
heights pro�les of the grid model B.
Top panel : the pressure height scale
Hp(R). Middle panel : the disk sur-
face height zs(R). Bottom panel : the
deplection height zdepl(R).

Figure 3.40: The �aring index
γ(R) (top panel) and incidente angle
αirr(R) pro�les (bottom panel) of the
grid model B.

Figure 3.41: Some R sections of the
source term from stellar irradiation
Q(R, z) of the grid model B.

In Fig. 3.39 we show the resulting characteristic heights pro�les H(R).

In Fig. 3.40 we show the resulting �aring index pro�le γ(R).

In Fig. 3.19 we show the resulting dust absorbed energy Q(z) from the primary
stellar radiation.
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Figure 3.42: Some R sections of the characteristic quantities (as Fig. 3.25) of the
radiation �eld of the grid model B.

Figure 3.43: Some R and iz sections of the gas-dust temperature distribution of the
grid model B.

Figure 3.44: The SED and the intensity pro�le at few wavelenghts of the grid model
B.

In Fig. 3.42 we show same characteristic quantities of the radiation �eld in the
disk.

In Fig. 3.43 we show the resulting temperature T (R, z).

In Fig. 3.44 we show the resulting intensity pro�le and SED.
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In this chapter we present a more simpli�ed circumstellar disk model which allow,
as the 1+1D model, a self consistent computation of the structure of a steady passive
thin disk in vertical hydrostatic equilibrium unter the single annulus approximation.
This model resolve the radiative transfer problem in a more simple way adopting
the 2-layer approximation of [30] Chiang & Goldreich (1997) with the modi�cation
of [38] Dullemond, Dominick & Natta (2001). Moreover, it include the possibility
to have a radial variation of the dust properties, in particular, the possibility to
modify the grain size distribution depending on the location in the disk. Given this
possibility, we have used it to study the dust emission from the resolved disks around
CQTau with the intention to investigate the radial variation of the dust properties
in the disk trying to constrain the grain growth process.

The chapter is organized as follow: In Sec.4.1 we introduce the 2-layer disk
model. In Sec.4.2 we analyse the basic equations and the adopted assumptions of the
model. In Sec.4.3 we show the adopted (paramteric) distribution for the maximum
grain size. In Sec.4.4 we show how we compute the Spectral Energy Distribution.
In Sec.4.5, ?? we illustrate the basic results of the disk structure calculation of
a �ducal disk model and we show how the di�erent quantity describing the disk,
a�ect its structure and emission properties. In Sec.4.6 we show the work of Ricci,
Trotta, & al. (submitted) which investigate the e�ect of possible local optical thick
regions on the mm-wave emission of protoplanetary disks. In Sec.4.7 we show the
work of [21] Brinstiel, Ricci, Trotta, & al. 2010 which presented the comparison of
mm-observations of disks around pre-main sequence stars in the Taurus-Auriga and
Ophiuchus star-forming regions with predicted mm-SED based on a dust evolution
model. In Sec.4.8 we show the result of �tting spatially resolved multi-frequency
observations at mm-wavelenghts of the disk around CQ Tau with our two layer
model.

4.1 Introduction: The 2-Layer Disk Model

As we have already described in the Sec. 3.1, disk models who better reproduce
results consistent with observations, are characterized by a �ared geometry and
a vertical temperature strati�cation. The simplest way to solve this problem is
adopting the so called `two layers' approximation �rst proposed by [30] Chiang
& Goldreich 1997. These models solve the radiative transfer problem in a simple
way (Fig. 4.1): the outer layer of the disk is directly irradiated by the stellar
radiation which strik the surface at an angle αirr. The stellar radiation energy is
completely absorbed within a visible optical depth along the direction of the ray
of unity (τV = 1). Energy conservation requires that this absorbed radiation is
re-emitted as infrared radiation, half of which is emitted away from the disk, while
the other half is emitted towards the disk midplane. This downward emitted �ux is
absorbed by the disk interior and re-emitted once more in the infrared, though this
time at longer wavelenght. So the disk vertical structure is composed of

1. a surface layer containing hot and small grains (from a fraction of µm up to
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Figure 4.1: Radial slice of a �ared 2-Layer passive disk and sketch of the radiative
trasfer. Stellar radiation strikes the surface at an angle α and is absorbed within
a visible optical depth of unity. Dust particles in this �rst absorbtion layer are
superheated to the temperature Ts. About half of the emission from the superheated
layer emerges as dilute blackbody radiation. The remaining half heats the interior
to a temprature Ti

few µm) directily heated from the stellar radiation. It is characterized by a
dust opacity ksν and a dust temperature Ts.

2. a internal layer containing cooler grains than the surface one as they are
heated by the radiation reprocessed by the surface layer. It is characterized
by a dust opacity kiν and temperature Ti.

Extensions has been done by [38] Dullemond, Dominick & Natta 2001 which
include the e�ects of self-irradiation and self-shadowing and [74] Lachaume et al.
(2003) which include the viscous heating.

These semi-analytical models allow a self-consistent computation of the disk
structure solving the radiative transfer problem in simple way. The main advantage
of these models is therefore the fast computation time of the disk structure which
allow for an e�cient �tting of visibility datasets even allowing for the computation of
large grids of model parameters. In spite of the simple radiative transfer approach,
this model retain a good accuracy in predicting the millimiter emission from the
disk midplane ([41] Dullemond & Natta 2003).

4.2 Basic Equations and adopted assumptions

As the 1+1D model, the 2-layer model solve the disk structure assuming: (1) an
axisymmetric disk in a single annulus approximation, (2) a geometrical thin disk, (3)
a disk in vertical hydrostatic equilibrium between stellar gravity and gas pressure,
with a �ared geometry, (4) a passive disk, (5) gas and dust in thermal equilibrium
(Td = Tg). We remand to the previous chapter for the physical discussion of the
above listed assumptions. Moreover the thermal disk structure is constructed in
simple way without numerically solve the RT problem. Let's now discuss the ba-



72 Chapter 4. 2-Layer Disk Approximation

sic equations of the model (see also [30, 31] Chiang & Goldreich 1997,2001, [38]
Dullemond,Dominick & Natta (2001)).

4.2.1 Vertically isotherm interior disk

As we have seen in Sec. 3.3.2, a thin disk in vertical hydrostatic equilibrium must
have a gas disk structure (ρg, Pg, Tg) that satisfy the pressure balance equation (3.30)
which we rewrite here for clearity:

1

ρg(R, z)

∂Pg(R, z)

∂z
= −GMz

R3
(4.1)

and we relate Pg, ρg and Tg by the equation of state of an ideal gas

Pg(R, z) =
kTg(R, z)

µmH
ρg(R, z) = c2

s(R, z)ρg(R, z) (4.2)

where cs = dPg/dρg =
√
kTg/µmH is the sound speed. The 2-layer disk model

semplify the problem assuming a vertically isothermal interior gas (Ti = Ti(R)) and
so a vertically constant sound speed (cs = cs(R)). In this way the Eq. 4.1 can be
easily analitically solved leading to a gas density distribution with vertical gaussian
pro�le

ρg(R, z) = ρ0g(R)e
− z2

2Hp(R)2 (4.3)

where ρ0g(R) is the gas density at the midplane z = 0 and the quantity Hp(R)

denotes the pressure scale height of the gas given by

Hp(R) =
cs(R)

Ωk(R)
(4.4)

where Ωk(R) =
√
GM∗/R3 is the local angular velocity. As show the Eq. 4.3,

the pressure height represent the height at which the gas density (and so the gas
pressure) decreased by a factor e−1/2 and is therefore a good measure of the disk
thickness. The disk aspect ratio is then

Hp(R)

R
=
cs(R)

uk(R)
=

(
Ti(R)

Tgr(R∗)

)1/2( R

R∗

)1/2

(4.5)

where Tgr(R∗) is the gravitational temperature at the stellar surface (Tgr is the
temperture at which the thermal energy of a particle balance the gravitational energy
KBTgr = GM∗µmH/R). The above relation demostrates that requiring that the
disk be thin is equivalent to requiring that the disk rotation is highly supersonic
uk � cs. Moreover it shows the close relationship between the disk thickness and its
midplane temperature, higher temperature = higher pressure height. The physical
origin of this relation is easily understood: due to thermal pressure, the disk tends to
expand in vertical direction, counteracting gravity, and hotter the disk, the stronger
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this tendency is. In order to obtain the vertical structure of the disk at di�erent
radii, we thus need to know how does the temperature vary with radius.

For a vertically isothermal disk, the gas density distribution (4.3) can be also
written in function of the gas surface density Σg. Infact using one properties of the
gaussian function (

∫ +∞
−∞ e−px

2
dx =

√
π/p) one can see that the surface density is

related to the disk midplane gas density ρ0g by

Σg(R) = ρ0g(R)

∫ +∞

−∞
e
− z2

2Hp(R)2 dz =
√

2πHp(R)ρ0g(R) (4.6)

In this way we can write the gas gaussian density distribution as

ρg(R, z) =
1√
2π

Σg(R)

Hp(R)
e
− z2

2Hp(R)2 (4.7)

4.2.2 Extintion of the primary stellar radiation

As in the 1+1D Model, the extintion process of the primary stellar photons, when
they enter into the disk and get absorbed by the dust, is modelled using a irradiation-
angle description ([30] Chiang e Goldrich 1997). This recipe models the stellar
irradiation in simple way: the stellar photons are inserted into the disk under angle
αirr(R) with respect to the disk's surface height zs(R), which is computed self-
consistently from the disk geometry. As showed in Sec 3.4.1, the incidente angle
of the photons for a �ared disk is given by the Eq. 3.45 that we rewrite here for
clearity:

αirr(R) =
4

3π

R∗
R

+ (γ(R)− 1)
zs
R

(4.8)

where γ(R) = dlogzs
dlogR is the �aring index. This incidente angle is typically very

small (around 0.05) and we can use the approximation [ sin α = α]. The �aring
index is a number of order γ ≈ 2/9. Its value is computed self-consistently during
the iteration procedure. Usually the iteration is started with a guess for γ and
updated after each few iteration steps. In order to avoid numerical instabilities,
γ is always evaluated two radial gridpoints away from the point where it is used
(see Appendix of [31] Chiang et al. 2001). It is important to note that a proper
self-consistent computation of the �aring index γ is crucial if one wants to achieve
energy conservation. The stellar �ux impinging with this angle into the disk can be
write:

F ∗irr = φ sin α
L∗

4πR2
= φα

(
R∗
R

)2

σT 4
∗ (4.9)

where a stellar blackbody emission is assumed (L∗ = 4πR2
∗σBT

4
∗ ). The parametr φ

takes into account possible shadowing e�ects i.e. point on the disk surface can not
see the entire star. If the disk would stretch all the way to the star, the bottom half
of the star would not be visible (φ = 1/2). However, since we will consider disks
with large inner holes, we can ignore this e�ect (φ = 1).
As the photons enter the disk, they get completely absorbed by the dust in the
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very tenuous upper layer of the disk, the surface layer. This layer is locate above
the surface height zs(R) which is de�ne as the height z above the midplane where
the visual optical depth along the direction of the incident stellar light is egual 1

(τV = τ⊥V /sin αgr = 1 ). Unlike the 1+1D model (see Eq. 3.47), the 2-layer model
de�ne the vertical optically depth τ⊥ using a mean dust opacity:

τ⊥(R) = ksP (R, T∗)

∫ ∞
z

ρd(R, z)dz (4.10)

where ksP (T∗) is the Planck mean opacities (per unit of dust matter) of the surface
layer dust at stellar temperature. Under the assumption of constant (0.01) dust-to-
gas ratio and with a Gaussian vertical gas density pro�le (Eq. 4.7), the equation
τV = 1 can be written:

1− erf
(
χhh(R)√

2

)
=

2α(R)

Σg(R)ksP (R, T∗)
(4.11)

where χhh = zs/Hp and erf(x) is the error function (erf (x) = 2√
π

∫ x
−∞ e

−x2
dx). (ksP

per unit of gas matter). Once obtained χhh, the surface height is given by:

zs
R

=
zs
Hp

Hp

R
= χhh

(
Ti
Tc

) 1
2
(
R

R∗

) 1
2

(4.12)

4.2.3 Disk thermal structure

The 2-layer model solve the disk thermal structure in a simple way. The temperature
of the dust particles in the surface layer is obtained simply from the optically thin
expression. Infact, since the disk surface layer is de�ned as the layer of matter in
direct sight of the central star up to τV = 1 (see Sec. 4.2.2), the dust temperature
in this layer can be estimated as:

Ts(R) =
1

ε
1/4
s

(
R∗
2R

)1/2

T∗ (4.13)

where εs is the ratio of the Planck mean opacities of the surface dust at Ts and T∗.
The temperature of the dust particles in the interior layer is determined in the

follow way. From energy conservation, this heated surface dust particle will re-emit
at low wavelenght half away from the disk and half towards the disk midplane. This
�ux re-emitted towards the interior is then

F emits (R) =
1

2
F ∗irr =

φα

2

(
R∗
R

)2

σT 4
∗ (4.14)

This �ux is then assorbed by the interior dust particle and re-emitted once more
at longer wavelenght. In the calculation of the �ux absorbed by the interior dust
particles (heating radiation), the 2-layer model take in accounts for the possibility
that the disk interior is not full optically thick to the radiation from the surface
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layer. Only a fraction ψs (between 0 and 1) of the emitted �ux from surface layer
will be absorbed by the interior. So the interior will absorb a �ux given by:

F absi (R) = ψsF
emit
s = ψs

φα

2

(
R∗
R

)2

σT 4
∗ (4.15)

where the fraction ψs is:

ψs(R) =

∫∞
0 Bν(Ts)k

s
ν

[
1− e−Σkiν

]
dν∫∞

0 Bν(Ts)ksνdν
(4.16)

The limits for high and low optical depth are respectively ψs(R) = 1 (for ΣkP (Ts)�
1) and ψs(R) = ΣkP (Ts) (for ΣkP (Ts)� 1). In the calculation of the emitted �ux
(cooling radiation) the 2-layer model take in accounts for the possibility that the disk
interior is not full optically thick to its own radiation. Only a fraction ψi (between
0 and 1) of the emitted �ux from interior dust will be absorbed by themself. So the
interior will emit a �ux given by:

F emiti (R) = ψiσT
4
i (4.17)

where the fraction ψi is:

ψi(R) =

∫∞
0 Bν(Ti)

[
1− e−Σkiν

]
dν∫∞

0 Bν(Ti)dν
(4.18)

The limits for high and low optical depth are respectively ψi(R) = 1 (for ΣkP (Ti)�
1) and ψi(R) = ΣkP (Ts) (for ΣkP (Ti) � 1). The midplane temperature is then
determined by equating the thermally emitted �ux (Eq. 4.17) to the absorbed �ux
(Eq. 4.15)

Ti(R) =

(
φα

2

ψs
ψi

)1/4(R∗
R

)1/2

T∗ (4.19)

4.3 Maximum grain size distribution

Numerical simulations of cougulation/sedimentation dust models in circumstellar
disks predict that grains grow, migrate and frament in the disk and predict variation
of dust properties as a function of position, disk age and physical properties. As
we have done in the 1+1D disk model, we incorporate in our 2-layer disk model,
the possibility to have, in parametric way, a spatial variation of the maximum grain
size distribution. We will assume here, for semplicity, that the gas and dust are well
mixed throughout the disk with a constant (0.01) dust-to-gas ratio.

We adopt for amax(R, z(i,s)) distribution a radial power law pro�les (both for
interior z(i) and surface z(s) layer)

amax(R, z(i,s)) = ai,s0max

(
R

R0

)bi,sR
(4.20)
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where ai,s0max is the maximum grain size value at the reference position R0, b
i,s
R is the

index of the radial power law pro�le. The maximum grain size distribution amax(z)

throughout the disk is governed by the process of grain growth and the subsequent
settling of the large grains to the midplane. This quantity contribuite to specify
the dust opacity distribution kν(z) (Eq. 2.10) and therefore regulate the radiative
transport in the disk.

4.4 Spectral Energy Distribution

Once the disk structure is know, we can compute intensity pro�le and Spectral
Energy Distribution (SED) from the circumstellar disk. As �rst approximation, the
SED of a circumstellar disk can be modeled as the sum of the contribution of annuli
and at each annulus one combine the �ux arising from the disk interir F iν with the
�ux from the disk surface layer F sν . These are expressed respectively by

F iν =
2πcosi
d2

∫ Rout

Rin

Bν(Ti(R))

[
1− e−

Σ(R)kiν (R)

cosi

]
RdR (4.21)

F sν =
2π

d2

∫ Rout

Rin

Bν(Ts(R))∆Σ(R)ksν(R)

[
1 + e−

Σ(R)kiν (R)

cosi

]
RdR (4.22)

([38] Dullemond et al. 2001, [31] Chiang et al. 2001) where d is the distance to
the source, i the disk inclination angle with respect to the plane of the sky (i = 0

means face-on), ∆Σ is the column density in the disk surface and ki,sν are the dust
opacityat the disk midplane and surface.
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Fiducial Disk Model
STAR L∗ = 0.3L� DISK DOMAIN R = [0.1−Rth]AU

M∗ = 0.5M�
T∗ = 3000◦K GAS SURFACE γ = 1.0

GAS µ = 2.3 DENSITY Rtr = 30AU

COMPOSITION (H2,He mixture) Σtr = 10g/cm2

DUST 7% silicates
COMPOSITION 21% carbonaceous MAXIMUM ai0 = 0.1cm, biR = 0

42% water ice GRAIN SIZE as0 = 1µm, bsR = 0

30% vacuum

Table 4.1: Parameters of the �ducial disk model.

Figure 4.2: The gas surface density
Σg(R) distributions of the �ducial disk
model.

Figure 4.3: The dust opacity
k

(i,s)
ν (R) distributions at few wave-
lenghts of the �ducial disk model.
(top)....(bottom)

4.5 Disk structure and emission

To illustrate the basic results of the disk structure calculation, we construct a �du-
cial disk model (table 4.1) for a typical T Tauri star. We consider a disk with
an inner hole of stellocentric radius 0.1AU . We assume here a gas surface density
Σg(R) give by the the self-similar solution for a viscous thin disk (Eq. B.10). Due
to the radial exponential fall-o� of this surface density (see �gure 4.2), the very out-
ermost disk regions become optically thin to the stellar radiation and the two-layer
approximation can not be applied. This transition to this optically thin regime oc-
curs at a certain radius Rth (the red cross in the �gure) and we adopt this radius as
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Figure 4.4: Characteristic quantities of the disk structure calculation for the 2-layer
model. (Left panels) are the surface height zs/R, the �aring index γfl and the
incident angle αirr. (Right panels) are the parameters ψ(i,s), the midplane and
surface temperature T(i,s) and the pressure height Hp/R.

the disk outer radius (Rout = Rth). This model corrisponds to a disk with vertical
absorbtion optical depth on the midplane (at visible wavelenght λV = xx) go from
τV = xx at inner radius to τV = xx at the outer disk, a gas mass Mgas

disk = 0.xxM�
and dust mass 100 time less. Our computations adopt a logarithmic grid of 300

points in radial direction, a logarithmic grid in wavelenght of 100 points covering a
domain 0.1µm ≤ λ ≤ 1cm and a logarithmic grid in grain size of 200 points covering
a domain 0.005µm ≤ a ≤ 10cm.

In �gure 4.3 we show the resulting dust opacity k(i,s)
ν (R) at few wavelenghts.

Because of the constant dust size distribution in radial direction, both the interior
and surface layer have therefore a radially constant dust opacity. As a consequence
of the two di�erent amax values in the two layers (0.1cm in the interior and 10µm

in the surface), we have di�erent values of dust opacity: the dust population in
the surface is more opaque at short wavelenght then the interior dust (green line)
mentre at long wavelengts (black line) the interior dust population is more opaque
then the surface dust.

In �gure 4.4 (left panel) we show the result of the �aring angle calculation.

In �gure 4.4 (right panel) we show the resulting temperature T (R).

In the bottom pannel �naly we show the pressure height Hp.

In �gure 4.5 we show the resulting gaussian gas density distribution ρg(R, z).
Clearly the gas density distribution decrease in radial direction as we have choosen
a gas surface density with γ > 0. At each position (R, z) the dust density has a
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Figure 4.5: The gas density distribution ρg(R, z) of the �ducial disk model.

Figure 4.6: The intensity pro�le at few wavelenghts (left panel) and the SED (right
panel) of the �ducial disk model.

value 100 time less the the gas density because of the constant (0.01) dust-to-gas
ratio distribution.

In �gure 4.6 (left panel) we show the resulting intensity pro�le. As the surface
density falling o� exponentially at large radii, the intensity pro�le also decrease
exponentially in the outer disk.

Figure 4.6 (right panel) show the resulting SED. The contribution to the SED
from the central star (red line) dominates at λ ∼ 1µm. At wavelenght of few µm

to ∼ 60µm emition arises from the hot surface layer of the disk (red line). The
contribution to the SED from the disk interior (blue line), which at a given radius
is cooler then disk surface by a factor ∼ 3, dominates at λ & 100µm.
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4.6 The E�ect of the local optically thick regions in the

long-wave emission of young circumstellar disk

Ricci, Trotta, Testi, Natta, Isella, Wilner 2011 (submitted)

Multi-wavelength observations of protoplanetary disks in the sub-millimeter con-
tinuum have measured spectral indices values which are signi�cantly lower than what
is found in the di�use interstellar medium. Under the assumption that mm-wave
emission of disks is mostly optically thin, these data have been generally interpreted
as evidence for the presence of mm/cm-sized pebbles in the disk outer regions.

In this work we investigate the e�ect of possible local optical thick regions on
the mm-wave emission of protoplanetary disks. A signi�cant local increase of the
optical depth in the disk can be caused by the concentration of solid particles,
as predicted by di�erent physical mechanisms potentially acting in the disk. We
calculate which �lling factors and overdensities these optically thick would need to
have for signi�cantly a�ecting the mm-�uxes of disks, and we discuss their physical
plausibility in real disk.

We �nd that optically thick regions characterized by relatively small �lling fac-
tors can reproduce the mm-data of young disks without requesting emission from
mm/cm-sized pebbles. However, these optically thick regions require dust overden-
sities much larger than what predicted by any of the physical processes proposed in
the literature to drive the concentration of solids. We �nd that only for the most
massive disks it is possible and plausible to imagine that the presence of optically
thick regions in the disk is responsible for the low measured values of the mm spec-
tral index. For the majority of the disk population, optically thin emission from a
population of large mm-sized grains remains the most plausible explanation. The
results of this analysis further strengthen the scenario for which the measured low
spectral indices of protoplanetary disks at mm wavelengths are due to the presence
of large mm/cm-sized pebbles in the disk outer regions.

4.6.1 Disk Model description

In order to derive the disk structure we adopted the 2-layer disk model of [30] Chiang
& Goldreich (1997) with the modi�cations of [38] Dullemond, Dominik & Natta
(2001). The model requires as input a set of parameters for the central star and the
disk. Here we consider disks around a PMS stars with a mass of 0.5M�, bolometric
luminosity of 0.9L� and e�ective temperature of 4000 K, which are typical values
for the sample of low-mass PMS star in [102, 103, 103] Ricci et al. (2010a, 2010b,
2011) in Taurus, Ophiuchus and Orion Nebula Cluster forming regions.

As disk surface density distribution we adopt the similarity solution for a viscous
evolution of thin accretion disk ([81] Lynden-Bell & Pringle 1974) written in the form

Σdust(R) = Σ0

(
R

Rc

)−γ
exp

[
−
(
R

Rc

)2−γ
]

(4.23)
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with values of the Σ0, γ and Rc parameters in the ranges observationally constrained
by sub-arcsec angular resolution imaging of young protoplanetary disks in the sub-
mm ([66] Isella et al. 2009, [6, 7] Andrews et al. 2009, 2010).

We compute the dust opacity coe�cient adopting the same dust model as [20]
Birnstiel et al. (2010a), [102, 103] Ricci et al. (2010a, 2010a), i.e. porous composite
spherical grains made of (vol. perc.) 7% astronomical silicates, 21% carbonaceous
material and 42% water ice and 30% vacuum. To estimate the optical properties
of such composite particles we use the Bruggeman e�ective medium theory ([27]
Bruggeman 1935) to calculate an e�ective dielettric function εeff for a composite
grain and then we use this function in the Mie Theory to derive the dust absorbtion
e�ciency Qabs(a, ν). The Mie coe�cients are calculate using the complex optical
constant of individual components that are taken from ([118] Weingartner & Drain
2001) for astronomical silicates, from ([124] Zubko et al.1996) for carbonaceous
material and from ([115] Warren 1984) for water ice. We adopt a power-law grain
size distribution with slope q

n(a) ∝ a−q (4.24)

truncated between the minimum and maximum grain sizes amin and amax, respec-
tively. Since in this work we want to investigate the impact of local optically thick
regions in the outer disk on the slope of the mm-SED without invoking the presence
of large mm-sized grains, we consider here a size distribution which has been pro-
posed by [88] Mathis et al. (1977) to �t extinction measurements of the interstellar
medium. For this ISM-like dust amax ≈ 0.1µm, amin � amax , and q w 3.5. Note
however that, for a given grain chemical composition, as long as amax < 0.1mm the
dust opacity coe�cient kν at mm wavelengths stays unchanged and does not even
depend on q (see Fig. 3 in [102] Ricci et al. 2010a). Therefore, the dust model
adopted here refers to a more general dust population in which only grains smaller
than ∼ 0.1mm are present.

In order to investigate the impact of possible local optically thick regions in
the outer disk on the mm emission properties we consider a disk containg at each
annulus a fraction f(R) of area which is optically thick at all the wavelengths. The
total �ux density of a such system can be written as

F iν =
2πcosi
d2

∫ Rout

Rin

Bν(Ti(R))
[
f(R) + (1− f(R))

(
1− e−τν(R)

)]
RdR (4.25)

In this way, a completely optically thick disk corrispond to have f(R) = 1 and a
disk without optically thick region corrispond to f(R) = 0 (we call this second case
`unperturbed' disk).

In order to make these regions optically thick, a certain quantitity of dust mass
has to be added to the disk. A simple way to estimate this mass is to calculate the
surface density which has to be present in the added regions to give them an optical
depth of about 1 at the longest wavelength considered in this work, i.e. 3mm, and
then integrate over the disk area covered by the �lling factor f . This represents
actually a lower limit for the mass which has to be present in the added regions to
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make them optically thick: if more mass is put onto those regions this does not have
a signi�cant e�ect onto the SED. Therefore, the dust surface density in the optically
regions is given by the condition

τ3mm ≈ Σf
dustκ3mm ≈ 1→ Σf

dust ≈
1

κ3mm
(4.26)

which implies that Σf
dust does not dipend on the stellocentric radius. As concequence

of this, if we consider a presence of optically thick region between the radii Rin and
Rout, the total dust mass in this region is

Mf
dust = f

∫ Rout

Rin

Σf
dust2πRdR = πfΣf

dust(R
2
out −R2

in) (4.27)

4.6.2 Results

In order to investigate the e�ect of the local optical thick regions on the mm-wave
emission we construct a grid of models varing faring the �lling factor f and the
parameters Σ0, γ and Rc of the surface density. We will treat �rst the simplest case
of f(R) which is constant with the radius (Sec. 4.6.2.1) and then we will consider
for f(R) a family of step functions which are non-zero only within speci�ed regions
in the disk (Sec. 4.6.2.2).

For each model we compute the mm-�ux density (Eq. 4.25) and we estimate
how much mass has to be added to the disk in order to make a fraction of the
disk surface optically thick even at mm-wavelengths (Eq. 4.27) and we compare the
predicted mm �ux and spectral slope with those measured by [102, 103, 103] Ricci
et al.(2010a, 2010b, 2011) for 49 disks in Class II YSOs in the Taurus, Ophiuchus
and Orion star forming regions.

4.6.2.1 Case of a constant f

We consider here the case of optically thick regions present at each radius (from
Rmin to Rmax) with constant �lling factor. Each pannels in Fig. 4.7 show the model
predictions (black symbols) on the F1mm − α1−3mm diagram for a given couple of
the (γ,Rc) parameter for the disk unperturbed structure and for di�erent values
of the �lling factor f and of the dust mass Munp

dust
1. The values of the parameters

considered in this work for the unperturbed disk, i.e. γ = 0, 1 and Rc = 20, 200AU ,
lay at the limits of the ranges for these parameters as recently constrained by a
high-angular resolution survey of about 30 protoplanetary disks in the sub-mm ([66]
Isella et al. 2009, [6, 7] Andrews et al. 2009, 2010).

In each panel the points with f = 0 represent the emission of the unperturbed
disk, i.e. without any addition of optically thick regions. The dependence of the �ux
density at 1 mm on the dust mass is due to the fact that the bulk of the material
reside in the outer disk regions where the surface density is relatively low and the

1The value of the normalization factor in equation 4.23 i.e. Σ0, is set after the (unperturbed)

dust mass in the disk
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Figure 4.7: Flux density at 1mm vs. spectral index between 1 and 3mm. Red, blue
and green points represent observational data of disks in Class II YSOs in Taurus,
Ophiuchus and OrNebula Cluster, respectively. Black symbols show the models
predictions for di�erent unperturbed dust mass: triangle for 10−5M�, stars for
10−4M� and squares for 10−3M� and in the case of optically thick regions present
at each radius.

emission optically thin. In terms of the spectral index α1−3mm the points with f = 0

lay at relatively large values of about 3−3.5. This is due to the adopted dust model
made of small grains, for which the value of the spectral slope β of the dust opacity
coe�cient is about 1.5. The slight decrease of α1−3mm with increasing dust mass is
given by the fact that for disks that are massive enough the innermost disk regions
(R < 10−20AU) are so dense that the emission from these regions becomes optically
thick in the sub-mm, and this has the e�ect of making the SED shallower. Note
however that the points with f = 0 do not get into the area of the F1mm − α1−3mm

diagram which contains the bulk of the observational data. In particular the models
presented here with f = 0 overpredict the observed spectral index α1−3mm.

The e�ect of increasing the �lling factor f of the optically thick regions has
always the same kind of signature in the (F1mm,α1−3mm)-plane: the absolute �ux
in the (sub-)mm increases because more and more optical depth is added into the
system, whereas the spectral index tends to decrease and approach the value of
about 2, as exspected for completely optically thick emission in the Rayleigh-Jeans
regime.

The main result shown in Figure 4.7 is that, for most of the unperturbed disk
structures, relatively low values of the �lling factor (f < 0.05) are required to
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explain the bulk of the data. The most signi�cant variation of the mm-�uxes with
the properties of the unperturbed disk comes when the characteristic radius changes
from 20 to 200 AU (see left and right panels, respectively). With Rc = 20AU the
surface density is more concentrated in the inner disk than in the Rc = 200AU

case. As a consequence of this the impact of the optically thick inner regions to the
total emission is more evident (see e.g. the low α1−3mm-value of the model with
f = 0 and a dust mass of 10−3M� for the unperturbed disk structure). However,
the �uxes of the disks with f > 0 do not dramatically depend on the structure of
the unperturbed disk. This is due to the fact that in most of the cases already for
f ≈ 0.05 the total disk emission becomes dominated by the added optically thick
regions.

What varies strongly with the unperturbed disk structure at a given f is the mass
which has to be included in these added regions in order to make them optically
thick. The total dust mass (Eq. 4.27) in this case can be written

Mf
dust ≈ πfΣf

dustR
2
out (4.28)

i.e. the total dust mass in the optically regions depends quadratically on the largest
radius in which these regions are present in the disk, namely 300 AU in this simu-
lation. For the dust considered, κ3mm ≈ 0.45cm2/g and Mf

dust ≈ f × 0.07M�. This
means that even in the case of the model with the largest unperturbed mass in dust
(10−3M�) and with the lowest value of the �lling factor f considered here (0.01),
the optically thick region contain at least 70% of the mass in the unperturbed disk.
This ratio then increases linearly with f and decreases with increasing the dust
mass of the unperturbed disk. This argument clearly shows that in order to have
optically thick regions of the kind discussed so far in the outer disk a very strong
redistribution of dust particles has to occur in the disk.

4.6.2.2 Case of f(R) as a step function

We consider here the result of optically thick regions localized in smaller areas of
the disk. In particular, we discuss four cases in which f(R) is a step function with
values greater than 0 between 10 and 20 AU, 30 and 40 AU, 50 and 60 AU, 80 and
90 AU, respectively. We consider annuli with a width of 10 AU because the physical
mechanisms proposed so far to concentrate particles locally in the disk typically act
on these length scales or smaller (see 4.6.3). The di�erent central radii chosen for
the annuli allow us to investigate how the location of the optically thick regions in
the disk can a�ect its total sub-mm emission.

The four panels in Fig. 4.8 show the model predictions (black symbols) on the
F1mm−α1−3mm diagram for disk with such localized optically thick regions and an
unperturbed disk structure with γ = 0.5 and Rc = 60AU , which are the median
values for disks imaged at high-angular resolution.

The optically thick regions can have a sign�cant impact onto the global mm-SED
even if they are concentrated in rings with the relatively small width of 10 AU. The
e�ect is stronger for the disk with lower masses because of the higher constrast in
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Figure 4.8: Like in Fig. 4.7 but in the case of optically thick regions localized in
annuli of 10 AU-width, with inner and outer radii indicated in the top left corner
of each panel and an unperturbed structure of the disk is characterized by γ = 0.5

and Rc = 60AU .

optical depth between the unperturbed disk and the optically thick regions. For the
same reason, i.e. the contrast with the unperturbed disk structure, and for the fact
that the area of an annulus of a given width scales linearly with the central radius of
the annulus, at a given �lling factor f inside the ring, the e�ect of the optically thick
regions is the largest in the ring which is the furthest from the star, i.e. between
80 and 90 AU. Note that to reproduce the bulk of the data, larger fractions f are
needed than in the f(R) = const case. This is because in the case of optically
thick emission, apart for the temperature, it is the surface area of the emitting
material that determines the amount of its emission. Therefore, if these regions are
distributed over a smaller area of the disk, they need to occupy a larger fraction
of that area, which is what we �nd with our analysis. This argument justi�es our
choice of dealing with very simple structures for the optically thick regions: even if
optically thick regions in real disks would likely have more complex structures than
modelled here, our analysis is meaningful in terms of the fractional area covered by
such regions throughout the disk.

As done in Section 4.6.2.1 for the case of a constant f within 300 AU, we analize
here the dust mass which has to be present in the optically thick regions (Eq.
4.27). For the case of the ring between 10 and 20 AU the total dust mass in the
optically thick regions isMdust ≈ f×2.4 ·10−4M� , and rises to ≈ f×5.5 ·10−4M�,
≈ f×8.7·10−4M� and ≈ f×1.3·10−3M� when the ring is moved outward to 50−60
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optically regions inside a ring between 10 and 20 AU

γ = 1 γ = 0.5 γ = 0

Rc = 20AU Rc = 200AU Rc = 20AU Rc = 200AU Rc = 20AU Rc = 200AU

Munpert
dust = 10−5M� 100 520 70 1200 55 3200

Munpert
dust = 10−4M� 10 52 7 120 5.5 320

Munpert
dust = 10−3M� 1 5.2 0.7 12 0.55 32

optically regions inside a ring between 10 and 20 AU

γ = 1 γ = 0.5 γ = 0

Rc = 20AU Rc = 200AU Rc = 20AU Rc = 200AU Rc = 20AU Rc = 200AU

Munpert
dust = 10−5M� 630 1300 530 2000 680 3300

Munpert
dust = 10−4M� 63 130 53 200 68 330

Munpert
dust = 10−3M� 6.3 13 5.3 20 6.8 33

optically regions inside a ring between 10 and 20 AU

γ = 1 γ = 0.5 γ = 0

Rc = 20AU Rc = 200AU Rc = 20AU Rc = 200AU Rc = 20AU Rc = 200AU

Munpert
dust = 10−5M� 2700 2300 5700 2700 62000 3400

Munpert
dust = 10−4M� 270 230 570 270 6200 340

Munpert
dust = 10−3M� 27 23 57 27 620 34

optically regions inside a ring between 10 and 20 AU

γ = 1 γ = 0.5 γ = 0

Rc = 20AU Rc = 200AU Rc = 20AU Rc = 200AU Rc = 20AU Rc = 200AU

Munpert
dust = 10−5M� 19000 4100 370000 3800 2.4 · 109 3700

Munpert
dust = 10−4M� 1900 410 37000 380 2.4 · 108 370

Munpert
dust = 10−3M� 190 41 3700 38 2.4 · 107 37

Table 4.2: Required dust overdensities in the added localized optically regions

AU and 80−90 AU, respectively, because of the increased area of the ring itself. To
explain the left end of the F1mm-α1−3mm diagram Fig.4.8 �lling factors f > 0.1 on
the top of the lowest mass disk (Munpert

dust = 10−5M�) are needed. However, the mass
in the optically thick regions is larger than the one in the unperturbed structure for
all the rings considered here. This would require an extremely strong concentration
of particles in those regions which are not seen in the results of the numerical
simulations run so far (see discussion in 4.6.3). For the disk withMunpert

dust = 10−4M�
a signi�cant decrease of the spectral index α1−3mm , i.e. down to about 2.5 and
lower is obtained only for f > 0.3. These �lling factors require dust masses in
the optically thick regions as large as at least 70% of the unperturbed disk mass.
Finally, the added optically thick regions in the most massive disk considered here,
with Munpert

dust = 10−3M�, contain relatively low dust mass as compared with the
unperturbed disk mass. For example, in the case of f = 0.5 the ratio among the
former and latter masses is about 12%, 28%, 44%, 65% for the optically thick regions
inside rings with radii of 10 − 20 AU, 30 − 40 AU, 50 − 60 AU and 80 − 90 AU,
respectively.

Tables 1-4 report, for models with di�erent unperturbed disk structures in terms
of total dust mass, γ and Rc , the required overdensities in the optically thick regions.
These are de�ned as the ratio between the dust surface density Σf

dust in the optically
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thick regions and the surface density in the unperturbed disk structure evaluated
at the center of the ring. Since Σf

dust is always the same (i.e. 1/k3mm ≈ 2.2cm2/g),
the required overdensities depend only on the value that the dust surface density
of the unperturbed disk assumes in the ring, and therefore on the (Munpert

dust , γ,
Rc ) parameters which de�ne such surface density. Note that the values of these
overdensities do not depend on the adopted value for the dust opacity κ3mm (or
equivalently on the adopted dust model). This is because both the surface density in
the optically thick regions, and the surface density in the optically thin unperturbed
disk structure at a given �ux depend on the dust opacity as κ−1

3mm. The lowest values
for the overdensities are found for the most massive disk when the overdensity region
is located closest to the star. The low overdensity values of order of unity indicate
that this disk is assive enough to have the unperturbed structure at radii of ∼ 10−20

AU marginally optically thick by itself, i.e. without the addition of any arti�cial
optically thick region.

4.6.3 Discussion

In this work we have discussed the possible e�ect of local optically thick regions in
the integrated �uxes of young disks in the millimeter. Since the required overdensi-
ties needed to make these regions optically thick are typically very large one could
expect these regions to be easily detectable with high-angular resolution imaging
through (sub-)millimeter interferometry. However, the contrast between the surface
brightnesses inside and outside the optically thick regions is not the only factor deter-
mining the possible observability of these structures. In fact, if the bright optically
thick regions were uniformly distributed throughout the disk and with characteris-
tic length scales much smaller than the angular resolution of the observations, they
would be smeared out by the convolution with the resolution element.

Since all the high-angular resolution observations of disks conducted so far in
the (sub-)mm have revealed a disk structure which is essentially homogeneous,
the results of existent observations provide an upper limit to the characteristic
length scales of the invoked optically thick regions. The highest angular resolutions
achieved so far in the sub-mm are about 0.2-0.4 arcsec, corresponding to physical
scales of ∼ 30− 60 AU at the distances of nearby star forming regions (Isella et al.
2010, Andrews et al. 2011, Guilloteau et al. 2011). This means that if optically
thick regions were concentrated in those 20 AU-wide annuli, a radial bump in the
surface brightness map could have been marginally detected, although not spatially
resolved, by these observations.

In order to probe non-homogeneous structures at smaller scales higher angular
resolution is needed. The Atacama Large Millimeter/Submillimeter Array (ALMA)
will allow to do that down to scales of a few AU only. For example, ALMA can
detect spiral density waves in nearby massive disks (Cossins et al. 2010). If non-
homogeneous regions will be detected by future observations with very high angular
resolution, a prediction of the models presented in this work is that the millimeter
spectral index measured in the bright regions should be equal to the spectral index
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of the Plank function in that region, which would be 2 in the case of Rayleigh-Jeans
emission. To determine more precise predictions from these models would require
further modelling of the disk structure with a proper treatment of the radiative
transport in the optically thick regions.

To understand whether the overdense optically thick regions discussed in this
paper are physically plausible in real protoplanetary disks, one has to compare
the required �lling factors and overdensities of regions with small < 0.1 mm-sized
grains discussed in the last section with the outcome of the numerical simulations
of di�erent mechanisms leading to the concentration of solid particles (see a recent
review by Chiang & Youdin 2010).

A promising mechanism to concentrate solid particles is through the develop-
ment of streaming instabilities, in which the gas and solid components are mutually
coupled by drag forces in a turbulent disk. Johansen & Youdin (2007) showed that
overdensities of particles even larger than 1000 can be formed. Another possible
mechanism which has been proposed to trap solids involves the presence of large
anticyclonic vortices in the disk. These structures can be the result of baroclinic
instability (Klahr & Bodenheimer 2003), the Rossby wave instability (Lovelace et
al. 1999, Regaly et al. 2011), or magneto-rotational instability (Fromang et al.
2005). Long-lived axisymmetric pressure bumps have been obtained in simulations
of magneto-rotational turbulent disks (Johansen et al. 2009). These pressure bumps
have the potential of trapping solids which are marginally coupled to the gas, like
mm-cm sized pebbles, but the obtained overdensities in gas are not large enough
(. 10−20%) to redistribute more gas-coupled small grains at the levels required for
the optically thick regime. Finally, some concentration of dust particles can occur
in disks undergoing gravitational instabilites. In these disks, the non-linear evolu-
tion of the instabilities lead to the formation of spiral waves with local overdensities
in the gas component as high as about 100 (Rice et al. 2004, Boss 2010). Since
sub-mm sized particles are well coupled to the gas, the same level of overdensity is
expected for small grains as well. Considering that spiral waves are characterized
by very extended structures, the results presented in this work show that the over-
dense regions in spiral waves can be optically thick even at mm-wavelengths and
can even dominate the emission of a young disk at these wavelengths. This means
that for gravitational unstable disks the measured low values of the mm-spectral
index (α1−3mm . 3.0) can be potentially explained by the optically thick emission
of small grains from overdense regions in spiral waves.
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4.7 Testing the theory of grain growth and fragmenta-

tion by mm-observations of protoplanetary disks

Brinstiel, Ricci, Trotta, Dullemond, Natta, Testi, Dominik, Henning, Ormel,

& Zsom 2010b A&A, 503, L5.

Observations at sub-millimeter and mm wavelengths will in the near future be
able to resolve the radial dependence of the mm spectral slope in circumstellar disks
with a resolution of around a few AU at the distance of the closest star-forming
regions.

In this work we presents the comparison of mm-observations of disks around pre-
main sequence stars in the Taurus-Auriga and Ophiuchus star-forming regions with
predicted mm-SED based on a dust evolution model with the aim to constrain the
grain growth and fragmentation processes. In order to predict mm-SED we coupled
a coagulation/fragmentation and disk structure codes.

Our models can quite naturally reproduce the observed mm-slopes, but a simul-
taneous match to the observed range of �ux levels can only be reached by a reduction
of the dust mass by a factor of a few up to about 30 while keeping the gas mass
of the disk the same. This dust reduction can either be caused by radial drift at a
reduced rate or during an earlier evolutionary time (otherwise the predicted �uxes
would become too low) or due to e�cient conversion of dust into larger, unseen
bodies.

4.7.1 Disk Model description

Both the coagulation/fragmentation and disk structure models, requires as input a
set of parameters for the central star and the disk. Here we consider disks around
a PMS stars with a mass of 0.5M�, bolometric luminosity of 0.9L� and e�ective
temperature of 4000 K, which are typical values for the sample of low-mass PMS
star in [102, 103] Ricci et al. (2010a, 2010b) in Taurus, Ophiuchus star-forming
regions.

As disk surface density distribution we adopt the similarity solution for a viscous
evolution of thin accretion disk ([81] Lynden-Bell & Pringle 1974) written in the form

Σdust(R) = Σ0

(
R

Rc

)−γ
exp

[
−
(
R

Rc

)2−γ
]

(4.29)

with values of the Σ0, γ and Rc parameters in the ranges observationally constrained
by sub-arcsec angular resolution imaging of young protoplanetary disks in the sub-
mm ([66] Isella et al. 2009, [6, 7] Andrews et al. 2009, 2010). The surface density
gradient γ and the characteristic radius Rc are assumed to be γ = 1 and Rc = 60AU.
We assume a constant dust-to-gas mass ratio of 0.01

We compute the dust opacity coe�cient adopting the same dust model as [102]
Ricci et al. (2010a) i.e. porous composite spherical grains made of astronomical
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Parameters
Mdisk [M�] 5× 10−3 10−2 5× 10−2 10−1

αt 5× 10−4 10−3 5× 10−3 -
uf [m/s] 1 3 10 -
fvac [% vol.] 10 30 50 -
ξ 1.0 1.5 1.8 -

Table 4.3: Parameters of the model grid: Mdisk is the total disk mass, αt is the turbu-
lence parameter, uf is the critical collision velocity, fvac is the grain volume fraction
of vacuum, and ξ is the index of the distribution of fragments. The parameters of
the �ducial model are highlighted in bold face.

silicates, carbonaceous material and water ice and vacuum. The ratio between
the fractional abundance of each species comes from [106] Semenov et al. 2003,
and model with three di�erent porosities have been considered (see Table 4.3) To
estimate the optical properties of such composite particles we use the Bruggeman
e�ective medium theory ([27] Bruggeman 1935) to calculate an e�ective dielettric
function εeff for a composite grain and then we use this function in the Mie Theory
to derive the dust absorbtion e�ciency Qabs(a, ν). The Mie coe�cients are calculate
using the complex optical constant of individual components that are taken from
([118] Weingartner & Drain 2001) for astronomical silicates, from ([124] Zubko et
al.1996) for carbonaceous material and from ([115] Warren 1984) for water ice.

Instead of using simple truncated parametric power-law distribution, in this work
we used the coagulation/fragmentation model ([20] Birntiel et al. 2010a) to simulate
the growth of dust particles. Particles grow through mutual collisions (induced by
Brownian motion and by turbulence, see [93] Ormel & Cuzzi 2007) and subsequent
sticking by van der Waals forces. We assume the dust particles to be spheres of
internal density ρs and vary ρs to account for porosity e�ects.

In this work to derive steady-state grain distribution where grain growth and
fragmentation e�ects balance each other. Because the relative velocities for particles
typically increase with grain radius, we can relate the fragmentation velocity to a
certain grain size

amax w
2Σg

παtρs

u2
f

c2
s

(4.30)

above which particles fragment. The distribution of fragments are assumed to follow
a power-law number density distribution n(m) w m−ξ with an upper end at mf .

So, the shape of the steady-state grain size distributions is in�uenced mainly
by the parameters αt, uf , Σg, cs and ξ which consist the free-parameters of our
investigation.
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Figure 4.9: In�uence of the parameters αt (top left), fragmentation velocity (top
right), disk mass (bottom left) and index ξ (bottom right) on the observed �uxes
and spectral indices. The black circle denotes the �ducial model whose parameters
are given in Table 4.3. The grey area represents the region in which the observed
sources lie (see Fig. 6.2).

Figure 4.10: Predicted pro�les of the dust opacity index at mm-wavelengths for
di�erent variations of the �ducial model. The colors correspond to the parameters
shown in Fig. 4.11
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Figure 4.11: Observed �uxes at mm-wavelengths of the Taurus (black dots) and the
Ophiuchus (blue dots) star-forming regions and the areas covered by the simulation
results for all possible combinations of the parameters shown in Table 4.3

4.7.2 Results

In order to see the e�ect of the di�erent quantities, characterizing the grain size dis-
tribution, we construct a grid of models (table 4.3) chosing with a range expected
from theoretical (see. Johoansen & Klahr 2005; Dzyurkevich et al. 2010), observa-
tional ([6] Andrews et al. 2009) and experimental works (Güttler et al. 2010).

Figure 4.9 show the in�uence of the di�erent parameters on the obseved �ux and
spectral indices

1. αt e�ect (top left panel): According to Eq. 4.30 the maximum grain size
decrease if αt increase. Depending on where amax lies with respect to the
opacity peak, α1−3mm can increase or decrease with increasing αt. For the αt
values used here, amax is typically so large that increasing αt predicts steeper
spectral slopes.

2. uf e�ect (top right panel): The maximum grain size is proportional to u2
f ,

therefore an increase of uf by a factor of about 3 signi�cantly change α1−3mm

by increasing the grain size by about one order of magnitude. However many
models with a fragmentation velocity of 10m/s never reach a steady state. It
is therefore not possible to explain lower α1−3mm values by a further increase
of uf alone.

3. Mdisk e�ect (bottom left panel): The in�uence ofMdisk on F1mm and α1−3mm

is twofold. Firstly, a decrease in Mdisk (assuming a constant dust-to-gas ratio
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and a �xed shape of the disk surface density, i.e. not varying Rc and γ) reduces
the amount of emitting dust and thus F1mm . Secondly, such a reduction in gas
mass also reduces amax (Eq. 4.30), which tends to increase α1−3mm. Hence, in
order to explain faint sources with low α1−3mm, the amount of emitting dust
has to be reduced while the disk gas mass stays large. This e�ect could be
achieved in two ways: the amount of dust could be reduced by radial drift at
a reduced rate (full radial drift would quickly remove all mm-sized grains, see
Brauer et al. 2007) or only the 'visible' amount of dust is reduced if some of
the dust is already contained in larger bodies. This latter case is predicted by
our non-steady-state distribution models and will be discussed in more detail
in a forthcoming paper.

4. ξ e�ect (bottom right panel): In general, lower values of ξ translate to shal-
lower grain-size distribution, which results in lower values of β1−3mm (see
Draine 2006). The �gure does not seem to indicate a strong dependence on ξ,
but lower values of ξ (around 1) seem to be closer to the observations especially
at high �uxes.

Figure 4.10 show the predicted radial dependence of the dust opacity index
β1−3mm. It can be seen that the shape of most models looks similar, slightly in-
creasing from β1−3mm-values around 0.5 at 10 AU up to around 1.5 at 100 AU.
The reason for this is that amax depends on the ratio of surface density over tem-
perature. Under typical assumptions, amax will decrease with radius. An upper
grain size, which is decreasing with radius and stays outside the peak in the opacity,
results in β1−3mm increasing with radius (cf. Fig. 3 in Ricci & al. 2010). If the
radially decreasing upper grain size amax reaches sizes just below mm, then the peak
in opacity will produce also a peak in the radial pro�le of β1−3mm (the size of which
depends much on the assumed opacity), which can be seen in Fig. 4.10. Thus, even
though amax is monotone in radius, β1−3mm does not need to be monotone.

4.7.3 Discussion and calculation

In this work we have present the �rst comparison of simulated grain size distributions
and observed mm spectral indices of YSOs in the Taurus and the Ophiuchus star-
forming regions. Additionally we present the �rst predictions of the radial pro�le of
the dust opacity index at mm wavelength that are consistent with the limits set by
Isella et al. (2010).

Low values of the observed mm-slopes are quite naturally reproduced by our
models, favoring low values of ξ and αt as well as fragmentation threshold velocities
above 1ms−1. However, a simultaneous match to the observed range of �ux levels
requires a reduction of the dust mass by a factor of a few up to about 30. This
over-prediction of �uxes cannot be �xed by simply reducing the disk mass because
the predicted α1−3mm would be too large for smaller disk masses. Opacities induce
a large uncertainty in the �ux levels. However, considering the results of Draine
(2006), it seems implausible that the large spread in observed �uxes for di�erent
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disks with similar α1−3mm (which is probably even larger as very faint disks are not
contained in the sample) can be explained by di�erent grain mineralogy alone. The
reduction of observable dust could be due to radial drift at a reduced rate or during
an earlier epoch (drift has been arti�cially suppressed in this work in order to explain
the low values of α1−3mm by & 1mm sized grains). Another possible explanation
is grain growth to even larger sizes, as these bodies have a small opacity coe�cient
per unit mass.

Finally, a di�erent dependence between α1−3mm and the observed �ux F1mm

might also originate from disk surface densities pro�les that di�er from what we
have assumed in this work.
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4.8 Constraining variations of dust properties in circum-

stellar disks with high angular resolution observa-

tions at mm-wavelenghts

Trotta, Testi, Natta, Ricci (in preparation)

Grain growth in protoplanetary disks is the �rst step towards the formation of
the rocky cores of planets. Models predict that grains grow, migrate and fragment
in the disk and predict varying dust properties as a function of radius, disk age and
physical properties. To constrain grain growth and migration in protoplanetary disks
high-angular resolution observations at more then one (sub-)mm wavelength are
currently being performed to detect possible radial variations of the dust properties
([67] Isella et al. 2010, [14] Banzatti et al. 2011, [55] Guilloteau et al 2011).

In this work we present results of �tting spatially resolved multi-frequency ob-
servations at mm-wavelenghts of the disk around CQ Tau with the two-layer disk
model that include the possibility di�erent grain size distribution as a function of
radius.

We have obtained a clear evidence of a radial dependence of the grain size dis-
tribution in this disk. In particular our model predict a grain size distribution with
a maximum size decreasing with radius. These results moreover, are in agreement
with recent dust evolution model prediction by [20] Birnstiel et al 2010a.

4.8.1 Disk Model description

In order to derive di disk structure we adopted the 2-layer disk model of [30] Chiang
& Goldreich (1997) with the modi�cations of [38] Dullemond, Dominik & Natta
(2001). The model requires as input a set of parameters for the central star and the
disk. The stellar properties of CQTau are assumed known as in [112] Testi et al.
(2003) (Teff = 6900K, L? = 6.6L�, M? = 1.5M� and d = 100pc). As disk surface
density distribution we adopt the similarity solution for a viscous evolution of thin
accretion disk ([81] Lynden-Bell & Pringle 1974) written in this form

Σ(R, t) = Σtr

(
Rtr
R

)γ
e
− 1

2(2−γ)

[(
R
Rtr

)(2−γ)
−1

]
(4.31)

where Σtr is the surface density at transition radius Rtr and γ is the slope of the
assumed power-low viscosity (see Appendix B for a brief review).

We compute the dust opacity coe�cient adopting the same dust model as [14]
Banzatti et al. 2011 i.e. porous composite spherical grains made of (vol. perc.)
7% astronomical silicates, 21% carbonaceous material and 42% water ice and 30%
vacuum To estimate the optical properties of such composite particles we use the
Bruggeman e�ective medium theory ([27] Bruggeman 1935) to calculate an e�ective
dielettric function εeff for a composite grain and then we use this function in the
Mie Theory to derive the dust absorbtion e�ciency Qabs(a, ν). The Mie coe�cients
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are calculate using the complex optical constant of individual components that are
taken from ([118] Weingartner & Drain 2001) for astronomical silicates, from ([124]
Zubko et al.1996) for carbonaceous material and from ([115] Warren 1984) for water
ice. We adopt a power-law grain size distribution with slope q

n(a) ∝ a−q (4.32)

truncated between the minimum and maximum grain sizes amin and amax, respec-
tively. The value of amin is set to 5nm according to the typical value observed for
unprocessed dust in the ISM and for the power law exponent we have used q = 3 as
proposed in previous studies and theoretical expectation ([37] Draine 2006). Since
in this work we want to investigate the radial dependence of the dust properties
in the disk around CQ Tau, we have included in our model the possibility to have
a radial variation of the grain size distribution adopting for the maximum size, a
power low pro�le

amax(R) = a0max

(
R

R0

)bmax
(4.33)

where a0max is the maximum grain size value at the reference position R0 = 40AU

and bmax is the power-law exponent.

4.8.2 Model �tting

In order to avoid the nonlinear e�ects introduced by the deconvolution process
(which can increases the noise level, specially in the case of weak extended source
like circumstellar disk) models and observations are compared in the Fourier space.
We analyze therefore the observed disk emission comparing the measured complex
visibilities with a theoretical predictions of our 2-Layer disk model. To de�ne how
well the model �ts the data, we adopt the χ2 parameter:

χ2 =
∑
j

[
[Rej(obs)−Rej(mod)]2 + [Imj(obs)− Imj(mod)]2

]
· wj (4.34)

where Re and Im are the real and imaginary part of the j-th observed (obs) or model
predicted (mod) visibility and w is the weight of each data point in the uv-plane
2. The �ve free parameters adopted in our �t procedure are: γ, Rtr, Σtr of the
surface density distribution (Eq. 4.31) and bmax, a0max of the maximum grain size
distribution (Eq. 4.33).

The disk inclination, position angle are assumed known as in [14] Banzatti et
al. (2011). Each free parameter is allowed to vary in a large range: [−1 : +1] for γ,
[15 : 40] for Rtr, [0.2 : 1.2] for Σtr, [−2.5 : +1.5] for bmax, [0.2 : +5.0] for a0max.
For each wavelenght λi (0.87mm, 1.3mm, 2.7mm, 7mm), we compute the χ2

λi
value,

corrisponding to a given set of free parameter, follow this sequence of step:

• We produce a model image of a given set of free parameters
2The u and v coordinates, the corrisponding visibility and the weight are provided in the

observed uv-table
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γ Σtr Rtr amax bmax
0.5 0.9 20.0 0.8 −1.8

Table 4.4: For each parameter we report the best �t value and the values of the 1σ

con�dence level intervals.

• We Fourier-Trasform the predicted disk image and sample the resulting visi-
bility function at the appropriate positions on the (u,v) plane corrisponding
to the observed samples.

• We compute the χ2
λi

value.

This procedure was repeated on the adopted grid of model parameters to contruct
a χ2

λi
hypercube for each wavelenght. In order to �nd the best �tting model, we

construct a new hypercube χ2
sum given by the sum of the all χ2

λi
hypercube and we

search the minimum of the χ2
sum as a function of all parameters.

4.8.2.1 Results

The best �t values and the con�dence range for the model parameters are listed
in table 4.4. In Fig. 4.12 we show the projections of the χ2

sum hypercube on each
coordinate (�rst line) and on di�erent planes.

The resulting maximum grain size distribution with bmax = −1.8 and a0max =

0.8 clearly evidence the radial dependence of the grain size distribution in the disk
around CQ Tau. This impliy the inner disk is populated by dust grains of more the
10 cm while the outer disk is characterized by small grain

These results moreover, are in agreement with recent dust evolution model pre-
diction by [20] Birnstiel et al 2010a.
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Figure 4.12: χ2
sum hypercube projections on each coordinate (�rst line) and on di�er-

ent planes. To produce each plot we have chosen the value of the other parameters
corresponding to the minimum of χ2

sum at each position on the planes shown.



Chapter 5

Conclusions and Future

Prospettive

In this thesis we have studied the structure and the emission properties at (sub-)mm
wavelenghts of circumstellar disk around pre-main sequence stars. In particular, the
main purpose was to investigated how the spatial variation of the dust opacity
can in�uence the disk thermal and geometrical structure and so a�ect its emission
properties. In order to reach this aim, we have constructed a circumstellar disk
structure model which include the possibility to take into account (in parametric
way) possible spatial variation of the grain size distribution and dust-to-gas ratio.
Moreover we have investigated if, a possible radial variation of a dust grain size
distribution can be constrained comparing our two layer disk model, against spatially
resolved multi-frequency observations at mm-wavelenghts

In Chap. 3 we have presented a new developed code which allow a self consistent
computation of the structure of a steady passive thin disk in vertical hydrostatic
equilibrium under the single annulus approximation (the so called 1+1Disk model).
In order to compute a self-consistent thermal and geometrical disk structure the
model numerically solve the hydrostatic equilibrium equation coupled to the radia-
tive transfer equation in vertical direction. In particular the RT problem is solved
with the Variable Eddington Factors (VEF) method which is been proved by [39]
Dullemond et al. (2002) to be a fast and e�cient method to �nd the solution of the
radiative trasfer equation in circumstellar disk. In order to investigate the spatial
variation of the dust opacity, the model include the possibility to have for each sin-
gle radius and height in the disk a population of dust grains that can be di�erent
in terms of maximum grain size and dust-to-gas ratio. Using di�erent (paramet-
ric) Rz-distribution for maximum grain size and dust-to-gas ratio the model predict
change in the disk structure and dust continuum emission and so can be used to
investigate the spatial variation of the dust property and try to constrain the grain
growth and settling processes.

In Chap. 4 we have presented a more sempli�ed circumstellar disk model which
allow, as the 1+1D model, a self consistent computation of the disk structure. This
model solve the radiative transfer problem in simple way adopting the so called `two
layers' approximation �rst proposed by [30] Chiang & Goldreich 1997. Using the
capability of our two-layer model to have a radial variation of the dust properties, in
particular, the possibility to modify the radial pro�le of the grain size distribution,
we have used it to interpret observations at sub-millimiter and mm wavelenghts of
disk around pre-main sequence stars.
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In Ricci, Trotta, & al. 2011 (submitted) we investigate the e�ect of possible
local optical thick regions on the mm-wave emission of protoplanetary disks. We
�nd that optically thick regions characterized by relatively small �lling factors can
reproduce the mm-data of young disks without requesting emission from mm/cm-
sized pebbles. However, these optically thick regions require dust overdensities much
larger than what predicted by any of the physical processes proposed in the literature
to drive the concentration of solids. The results of this analysis further strengthen
the scenario for which the measured low spectral indices of protoplanetary disks at
mm wavelengths are due to the presence of large mm/cm-sized pebbles in the disk
outer regions.

In [21] Brinstiel, Ricci, Trotta, & al. 2010 we have presented the comparison of
mm-observations of disks around pre-main sequence stars in the Taurus-Auriga and
Ophiuchus star-forming regions with predicted mm-SED based on a dust evolution
model with the aim to constrain the grain growth and fragmentation processes. In
order to predict mm-SED we coupled a coagulation/fragmentation and disk struc-
ture codes. Our models can quite naturally reproduce the observed mm-slopes, but
a simultaneous match to the observed range of �ux levels can only be reached by a
reduction of the dust mass by a factor of a few up to about 30 while keeping the
gas mass of the disk the same.

Given to fast computation time of the 2-layer model to solve the disk structure
and its possibility to take into account possible radial variation of the grain size
distribution, we have use it to �t spatially resolved multi-frequency observations at
mm-wavelenghts of the disk around CQ Tau. We have obtained a clear evidence of a
radial dependence of the grain size distribution in this disk. In particular our model
predict a grain size distribution with a maximum size decreasing with radius. These
results are, moreover, in agreement with recent dust evolution model prediction by
[20] Birnstiel et al 2010a.

The two circumstellar disk models developped in this thesis are based on the ap-
proximate 2-layer and 1+1D irradiation-angle description. In reality the structure of
these disk is 2-D, if axisymmetry can be assumed, and 3D if it cannot. Over the last
10 years many multidimensional dust constinuum radiative transfer programs and
algorithms were developed for this purpose (Sec. 2.3.1). The main improvements
of 2D/3D models over 1+1D models is their ability to account for radial radiative
energy di�usion in the disk, for cooling of the outer disk in radial direction, for the
complex 3D structure of the dust inner rim and in general for more realistic model
images. Therefore, an extension of our 1 + 1D circumstellar disk model to a full 2D
model can be fondamental for a more precise prediction of dust emission propriety.



Appendix A

Theory of radiation-matter

interaction

In this Appendix we give a brief introduction of the theory we use to estimate the
optical properties of the dust grain in our disk model. We present in (A.1) the
main steps to derive the absorbtion and scattering e�ciencies with the Mie theory

in the simplest case of homogeneous spherical grains (for more detail see [23]). A
similar approach can be used for other idealized grain geometry like in�nite circular
cylinders grains, or spheroidal grains. In (A.2) we give a brief overview of the
e�ective-medium theories used to describe the optical properties of inhomogeneous
dust grains.

A.1 Mie theory for a sphere

Scattering and absorbtion of light by spherical grains is a problem of classical elec-
trodynamic. The formal solution of this problem was derived by Mie in 1908 and
is known as Mie theory or Mie solution. In the Mie theory, one �nds the scattered
electromagnetic �eld and the �eld inside the particle by expanding both into an
in�nite series of indipendent solutions to the wave equation; the series coe�cients
are determinated from the boundary conditions on the particle surface. Let's see
the main steps to derive the absorbtion and scattering e�ciencies.
Consider a spherical particle in vacuum illuminated by a linearly polarized monocro-
matic plane wave of frequency ν = ω/2π. Let Ei andHi descibe the incident electric
and magnetic �eld. We denote the �eld within the particle by E1,H1 and outside of
it by E2, H2. The �eld outside is the superposition of the incident and the scattered
�eld

E2 = Ei +Es (A.1)

H2 = Hi +Hs (A.2)

The further calculation are greatly simpli�ed by the folloing relations. Let c be
an arbitrary constant vector and ψ a solution to the scalar wave equation

∆ψ + k2ψ = 0 (A.3)

where k =
√

ω2µε
c2

is the wavenumber, µ is the magnetic permeability and ε is the
dielectric permeability. So k take into account all material properties. Then the
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vector function M, de�ned by
M = rot(cψ) (A.4)

is divergence-free (divM = 0) and a solution to the vector equation

∆M+ k2M = 0 (A.5)

This is easy to prove either by the standard formulae of vector analysis or
component-wise. The vector function N given by

N =
1

k
rot M (A.6)

also obey the wave equation
∆N+ k2N = 0 (A.7)

Step 1 In the �rst step one solve the scalar wave equation with separation of
variables method. In spherical polar coordinates (r, θ, φ), the (A.3) can be written

1

r2

∂

∂r

(
r2∂ψ

∂r

)
+

1

r2sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2sin2θ

∂2ψ

∂φ2
+ k2ψ = 0 (A.8)

We make an ansatz of separated variables ψ(r, θ, φ) = R(r) · T (θ) · P (φ). This lead
to the three equations:

d2P

dφ2
+m2P = 0 (A.9)

1

sin θ

d

dθ

(
sin θ

dT

dθ

)
+

[
n(n+ 1)− m2

sin2θ

]
T = 0 (A.10)

d

dr

(
r2dR

dr

)
+ [k2r − n(n+ 1)]R = 0 (A.11)

The linearly indipendent solution to (A.9) are sin (mφ) and cos (mφ). Becouse
they must be single-value (P (φ) = P (φ + 2π)) it follow that m = 0,±1,±2, ....

Equation (A.10) is satis�ed by the Legendre functions of the �rst kind Pmn (cos θ),
where n and m are integer and m ∈ [−n, n]. The equation (A.11) has, as solution,
the spherical Bessel functions of the �rst (jn =

√
π/2ρJn+ 1

2
(ρ)) and second (yn =√

π/2ρYn+ 1
2
(ρ)) kind where ρ = kr and n + 1

2 is half-integer. Altoghether the
solution can be written

ψemn = cos (mφ) · Pmn (cos θ) · zn(kr) (A.12)

ψomn = sin (mφ) · Pmn (cos θ) · zn(kr) (A.13)

Here zn may either equal jn or yn. In the subindices of ψ, `e' stands for even
(associated with cosine terms) and `o' for odd (sine terms). As ψ is the generating
function for M, we get, from (A.4)

Memn = rot(rψemn) (A.14)

Momn = rot(rψomn) (A.15)
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Nemn and Nomn then follow from (A.6)

Step 2. In the next step, one expands the incident, internal and scattered waves
into the spherical harmonics Memn, Momn, Nemn and Nomn. One obtain, for the
internal and scattered �eld:

Ei =
∞∑
n=1

En

(
cnM

(1)
o1n − idnN

(1)
e1n

)
(A.16)

Es =
∞∑
n=1

En

(
anN

(3)
e1n − bnM

(3)
o1n

)
(A.17)

where En = E0i
n 2n+1
n(n+1) , the scalar E0 denotes the amplitude of the incident

wave. The superscript (1) signi�es that the radial dependence of the generating
function ψ is given by jn and not by yn and the superscript (3) denotes that the
dipendence of the generating function is given by the spherical Hankel function
hn(z) = jn(z) + iyn(z) of order n. The magnetic �elds Hi, Hs follow from the
corresponding electric �elds by applying the curl after Maxwell's equation.

Step 3 Then, one compute the expansion coe�cients in (A.16) and (A.17) from
the boundary conditions of the electromagnetic �eld at the surface of the grain.
This lead to four linear equation for the expansion coe�cients an, bn, cn and dn
of the internal and scattered �eld. If λ is the wavelength of the incident radiation,
m the complex optical constant of the sphere, a its radius and x = 2πa/λ the size
parameter, then an and bn are given by

an =
ψn(x) · ψ′n(mx)−mψn(mx) · ψ′n(x)

ζn(x) · ψ′n(mx)−mψn(mx) · ζ ′n(x)
(A.18)

bn =
mψn(x) · ψ′n(x)− ψn(mx) · ψ′n(x)

mζn(x) · ψ′n(mx)− ψn(mx) · ζ ′n(x)
(A.19)

The complex functions

ψn(z) = zjn(z) (A.20)

ψ′n(z) = zjn−1(z)− njn(z) (A.21)

ζn(z) = z[jn(z) + iyn(z)] = zh(1)
n (z) (A.22)

ζ ′n(z) = z[jn−1(z) + iyn−1(z)]− n[jn(z) + iyn(z)] (A.23)

may be calculated from the recurrence relations (Abr70)

jn(z) = −jn−2(z) +
2n− 1

z
jn−1(z) (A.24)

y′n(z) = −yn−2(z) +
2n− 1

z
yn−1(z) (A.25)

starting with j0(z) = sin z/z, j1(z) = sin z/z2−cos z/z, y0(z) = −cos z/z, y1(z) =

−cos z/z2 − sin z/z.
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Step 4 One computed the scattered and absorbed power.
...
...

Step 5 We compute the absorbtion and scattering e�ciencies.
According the de�nition in xx, Wa is related to the absorbtion coe�cient of the
particle, Cabs through Wabs = SiCabs. replacing the �elds Ei and Es in the xx, one
obtain, after some algebra, the following formulae for the e�ciencies of extintion
and scattering:

Qext =
2

x2

∞∑
n=1

(2n+ 1)
[
|an|2 + |bn|2

]
(A.26)

Qsca =
2

x2

∞∑
n=1

(2n+ 1)Re {an + bn} (A.27)

where the expansion coe�cients an,bn are given in xx. The asymmetry factor be-
comes:

g =
4

x2Qsca

∞∑
n=1

[
n(n+ 2)

n+ 1
Re {a∗nan+1 + b∗nbn+1}+

2n+ 1

n(n+ 1)
Re {a∗nbn}

]
(A.28)

We troncate all the in�nite series after nmax = x+ 4x1/3 + 2 with x = a2π/λ as
sugest by Bohren and Hu�man (1983).

A.2 E�ective-medium theory

The description of the optical properties of inhomogeneous dust grain is an impor-
tant task in many astrophysical problems. An approach widely used for this purpose
is the application of e�ective-medium theories(EMTs). The basic idea of the EMTs
is to derive an e�ective dielectric function εeff for a system of subgrain consisting
of di�erent materials and therefore with di�erent electromagnetic properties. A ho-
mogeneous grain with this dielectric function shall show the same characteristics in
absorbtion and scattering as the original inhomogeneous particle.

The basic condition is that the e�ective dielectric function εeff searched for, has
to ful�l the condition

〈D〉 = εeff 〈E〉 (A.29)

where the angular brackets stand for a volume averaging over the entire grain volume
V

〈E〉 =
1

V

∫
E(x)dV 〈D〉 =

1

V

∫
ε(x)E(x)dV (A.30)

If we consider the grain consisting of a �nite number of homogeneous components
each with its own dielectric function εj and volume feaction fj , we can write

〈E〉 =
∑
j

fjEj 〈D〉 =
∑
j

fjεjEj (A.31)
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where Ej are averanges themselves over the subvolume fjV (we have dropped the
brakets). The relation (A.29) is thus replaced by∑

j

εjfjEj = εeff
∑
j

fjEj (A.32)

We envisage the components to be present in the form of many identical sub-
particles that are much smaller then the wavelength. When such a subparticle is
placed into an extended medium with a spatially constant but time-variable �eld
E
′
, there is a linear relation between the �eld in the subparticle and the �eld in the

outer medium εeff
Ej = βE

′
(A.33)

When one assumes that such a large-scale average �el E
′
in the grain exists, one

can remove the local �elds Ej and �nd the e�ective dielectric function εeff .
Two di�erent approach can be used in the e�ective-medium theory. The �rst

is `Maxwell-Garnett approach' assumes that the inhomogeneous material consists of
an embedding matrix material (subscript m) which contains separated inclusions
of other materials in low concentration (subscript i) with the sum of the volume
fraction is unit (fm +

∑
i fi = 1). For the constant large-scale �eld E

′
in (A.33), we

take the �eld in the matrix m and obtain∑
fiβiεi + fmεm = εeff

∑
fiβi + εefffm (A.34)

which give us the Maxwell-Garnett rule:

εeff =
fmεm +

∑
fiβiεi

fm +
∑
fiβi

(A.35)

The second is the `Bruggeman approach' supposes that none of the di�erent ma-
terials is dominant in the mixture, like the matrix in the Maxwell-Garnett approach.
Then the components distinguish themselves only through their permeability and
volume fraction and no assumption is made about the averange �eld E′. Inserting
(A.33) in (A.32) yields the Bruggeman rule:

0 =
∑
j

(εj − εeff )fjβj (A.36)

with
∑

j fj = 1. If the components consist of spherical entities

0 =
∑
j

fj
εj − εeff
εj + 2εeff

(A.37)

Thus for n components, εeff is determined from a complex polynomial of n-th
degree. This is the eqution that we solve to estimate the optical properties in our
disk model.





Appendix B

Angular momentum conservation

equation for a thin accretion disk

The key equation describing the gas evolution of an accretion disk is the angular

momentum conservation equation. In this Appendix we examine the properties
of a simple viscous thin disk model where the only angular momentum transport
is provided by viscous stresses. In Sec. B.1 we derive the angular momentum
conservation equation for a thin disk underlining the important role of the viscosity.
In Sec.B.2 we show a simple class of solution that can be obtained when the viscosity
function is time-indipendent and has a power-law dependence on radius ν ∝ Rγ .

B.1 The Di�usion equation for the disk surface density

As we have see in Sec. 3.3.2, unter the assumption of an axisymmetric disk, the
pressure and gravitational forces do not give any contribution in the azimutal com-
ponent of the Navier-Stokes equation (Eq. 3.23). Let us then write the Eq. 3.23 in
vertically integrated form:

Σ

(
∂uφ
∂t

+
uRuφ
R

+ uR
∂uφ
∂R

)
=

1

R2

∂

∂R

(
R2TRφ

)
(B.1)

where TRφ is the vertical integral of the relevant component of the stress tensor and
the last two terms on the left-hand side are obtained from writing the di�erential
operators in cylindrical coordinates (Eq. 3.26). Multipling the above equation by
R and using the continuity equation (3.21), we can write (B.1) as

∂l

∂t
+

1

R

∂

∂R
(RuRl) =

1

R

∂

∂R

(
R2TRφ

)
(B.2)

where l = ΣRuφ is the angular momentum (per unit mass). The physical interpreta-
tion of the above expression is readily apparent. The left-hand side is the Lagrangian
derivative of the angular momentum and the right-hand side is the torque exerted
by viscous forces.

In the case of a thin disk, we have seen in Sec. 3.3.2 that the rotation curve is
keplerian (Eq.3.29) and the stress tensor can be simply approximate by the classical
shear viscosity (Eq.3.28) which vertically integrated can be written as

TRφ = νΣR
dΩ

dR
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Under these approximations and with the help of the continuity equation (3.21), we
can obtain the radial velocity

uR = − 3

ΣR1/2

∂

∂R
(νΣR1/2) (B.3)

which can be inserted back in the continuity equation (3.21) to �nally give

∂Σg

∂t
=

3

R

∂

∂R

[
R1/2 ∂

∂R

(
νΣgR

1/2
)]

(B.4)

This equation is one of the key equations in the thin accretion disk theory. This
is a non linear di�usion equation for the surface density whose temporal evolution
is determined only by the viscosity ν. This clearly show the important role of
the viscosity in the accretion disk theory, since it ultimately is the quantity that
determines the evolution of the disk density

B.2 Self similar Solution

To solve the di�usion equation for the surface density (B.4), we need to specify how
the viscosity law is done. Although one can not obtain the general solution of this
equation, it's well know that exist a series of analytic solutions (steady state and
time-dependent solution) that can be obtained assuming some particular function
for the viscosity ν. These solutions can be obtained either in linear case (ν = ν(R))
in which case the Green function can be obtained analytically ([80] Lüst 1952; [81]
Lynden-Bell & Pringle 1974) or in non-linear case (ν = ν(R,Σ)) in which case
similarity methods can be used to obtained an exact special solution of the equation
([100] Pringle 1974; [78] Lin & Bodenheimer 1982; [79] Lin & Pringle 1987; [82]
Lyubarskii & Shakura 1987).

In this thesis we have used a (Lynden-Bell & Pringle 1974) time-dependent self-
similar solution of (B.4) obtained in the linear case unter the assumption that the
viscosity law is time-indipendet and has a power law dependence on radius

ν ≺ Rγ (B.5)

In this case a self similar solution of (B.4) can be written

Σ(R̃, t̃) =
C

3πν1R̃γ
t̃

[
− (5/2−γ)

(2−γ)

]
e

[
− R̃

(2−γ)

t̃

]
(B.6)

where C is a normalization constant, R̃ = R/R1 is the disk radius in units of radial
scale factor R1, ν1 = ν1(R1) is the disk viscosity at radius R1, γ is the slope of the
disk viscosity, t̃ is the non-dimensional time, t̃ = t/ts + 1, t is the age of the disk,
and ts is the viscous scaling time at the radius R1 de�ned by:

ts =
1

3(2− γ)2

R2
1

ν1
(B.7)
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t̃ Rtr Σtr Mdisk

1 15.0 12.871 0.0068
3 45.0 0.8257 0.0039
10 150.0 0.0407 0.0021

Figure B.1: Evolution of the surface density according to Eq. (B.6) for γ = 1,
R1 = 30AU , ν1 = 1015 and C = 1017. The three lines show, from top to bottom,
the self-similar solution at increasingly large times (t̃ = 1, 3, 10, respectively). The
red points correspond to the surface density at the transitional radius Rtr.

The evolution of surface density for the case γ = 1 is showen in �gure B.1. How we
can see this form of the surface density has the characteristic of falling o� exponen-
tially at large disk radii. Over time, the disk mass decreases while the characteristic
scale of the disk (initailly R1) expands to conserve angular momentum. This solu-
tion is quite useful both for studying evolving disks analytically, and for comparing
observations of disk masses, accretion rates or radii with theory ([56] Hartmann et
al. 1998).

The surface density as expressed by Eq. B.6 includes a signi�cant number of
unknown quantitaties, C, ν1, γ, ts and R1. As showed in ([67] Isella, Carpent,
Sargent 2010) is more suittable for model �tting rewrite the (B.6) in function of the
`transition radius' (i.e. radius at which the mass �ow Ṁ(R, t) changes sign). Since
disk evolution is governed by the conservation of the total angular momentum, the
disk must expand while matter is accreting on the central star so that for R < Rtr
the resulting mass �ow is directed inward (disk accretion) and for R > Rtr outward
(disk expantion). The mass �ow can be written as

Ṁ(R, t) = Ct̃

[
− (5/2−γ)

(2−γ)

]
e

[
− R̃

(2−γ)

t̃

]
(B.8)

from which we can compute the transition radius

Rtr(t) = R1[t̃/2(2− γ)]1/(2−γ) (B.9)

As shown in �gure B.1, the transition radius (red circle) moves outward as the disk
evolves. In function of Rtr(t) and the corrispondent surface density Σtr = Σ(Rtr, t),
the surface density pro�le can be written:

Σg(R, t) = Σtr

(
Rtr
R

)γ
e
− 1

2(2−γ)

[(
R
Rtr

)(2−γ)
−1

]
(B.10)
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These models have been recently demostrated to more accurately reproducing
the observed dust distribution in protoplanetary disks with respect to a power-law
pro�le ([61] Hughes et al. 2008; [66] Isella et al. 2009; [6] Andrews et al. 2009) and
in this thesis we try to constrain the parameter (γ,Rtr,Σtr) �tting of mm spatial
resolved observation of CQTau.



Appendix C

Visibility function and uv-plane

A detailed studies of circumstellar disk in star-forming regions need high angular
resolution. Since circumstellar disks in nearby star-forming typically have radii
between 100 and 500 AU, sub-arcsecond angular resolution is required to spatially
resolve the dust emission. Millimiter-wave interferometers are so essential for such
studies. In this Appendix we give a brief description of one funtamental quantity
for interferometry: the `Visibility Function'.

C.1 Visibility function and uv-plane

In radio astronomy, we observe the radio waves emitted from space. Since the
source is far away, the received electromagnetic �eld intensity distribution can be
observed only in an angular direction (no information regarding the intensity distri-
bution in the radial direction). De�ning the celestial sphere as the maximal sphere
that contains no radiating sources, the observed intensity is the projection of the
source intensity on the celestial sphere. For simplicity, we will deal with a quasi-
monochromatic wave at frequency ν (the general case can be easily derived by a
linear combination of quasi-monochromatic waves). The electric �eld at location r
is given by

Eν(r) =

∫
εν(q)

e2πi(|q−r|/c)

|q− r|
dS (C.1)

where εν(q) is the electric �eld at location q (on the celestian sphere), dS is surface
area on the sphere and the integration is done over the entire sphere and c is the
speed of light. For two antennas observing a distant source (receiving the electric
�eld emitted by the source), there is a geometrical delay in one of the antennas
relative to the other antenna derived from the source observation angle (�gure C.1
a). If the geometric delay is compensed by an electronic delay, the electric �eld
received in one antenna should be highly correlated with the electric �eld received
by the other antenna. The spatial coherency of the electric �eld for two antennas
located at r1 and r2 is given by

Vν(r1, r2) = 〈Eν(r1),E∗ν(r2)〉 (C.2)

where 〈〉 stands for the expectation value. Substituing (C.1) into (C.2) and taking
into account the large distance of the source; i.e., |q− r| ≈ |q| and that the electric
�eld is spatially incoherent (i.e 〈εν(q1), ε∗ν(q2)〉 = 0 ∀q1 6= q2) we get

Vν(r1, r2) =

∫
Iν(s)e2πi(r1−r2)/cdΩ (C.3)
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Figure C.1: The visibility is the measurement of spatial correlation between the
electric �eld of antenna pairs. The geometric delay of the wave that propagates
from the source to the two antennas is compensated by an electronic delay. (b)
A distant source is observed by an antenna pair. The baseline connecting the two
antennas is the origin of the (u, v, w) coordinate system. The w axis points from the
baseline toward the source reference point. (u, v) are perpendicular to w and selected
according to the Earth's orientation. (l,m, n) is a unit vector in the (u, v, w) system
pointing toward a speci�c location in the source (at the source reference point S0,
l = 0, m = 0) and n =

√
1− (l2 +m2).

where Iν(s) ≡ 〈εν(s)2〉 is the source intensity at direction s on the sphere (s ≡ q/|q|),
and dΩ = dS/|q|2. Rappresenting (C.3) in the (u, v, w) coordinate system (e.g.
planar arrays) we obtain the visibility 1

Vν(u, v) =

∫ ∫
Iν(l,m)e2πi(ul+vm)dldm (C.4)

The visibility is the Fourier trasform of the source intensity; therefore the inverse
relation holds

Iν(l,m) =

∫ ∫
Vν(u, v)e2πi(ul+vm)dudv (C.5)

For a source with visibility measurements covering the entire (u, v) domain,
the source image is perfectly computed by the Fourier inversion of the visibility. In
practice, only a small part of the (u, v) domain is measured by sampling the existing

1the (C.4) is written in coplanar (or small-angle) approximation and we can neglect the w

coordinate
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antenna pair baselines as they change with the Earth's rotation relative to the (u, v)
coordinates (at time tk two antennas p and q measure a single visibility point in the
(u, v) domain at (ukpq, v

k
pq)) (�gure C.1 b). This set of samples is know as the `(u, v)

coverage' of the interferometer. This coverage is determined by many factors such
as the con�guration in which the individual telescopes are placed on the ground, the
minimal and maximal distance between antenna pairs, the time di�erence between
consecutive measurements and total measurement time and bandwidth
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